Assessment of the potential of associated gas utilization by means of gas injection technologies for the purpose of oil recovery increasing

Authors: D.V. Pesotskaya, M.V. Fedorov, M.Yu. Klimov, R.Ya. Khmelevsky, V.Yu. Vasiljev, S.V. Kovalchuk (Gazpromneft NTC LLC, RF, Saint-Petersburg)

Key words: associated gas utilization, gas injection, miscible displacement, oil recovery increasing.

International experience analysis of the gas injection technologies implementation as the enhanced oil recovery method indicates a high degree of the success in the context of the increased oil recovery. The relation between the extra oil recovery and the volume of associated gas injected as well as the relation between the extra oil recovery and the methane fraction in the associated gas were obtained in the course of the works. Assessment of the technical and economic efficiency of the associated gas injection implementation on Gazprom neft JSC oil fields for the purpose of enhanced oil recovery was carried out.

References

1. Baykov N.M., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 6, pp. 105-107.

2. Gumerov A.G., Bazhaykin S.G., Yusupov O.M. et al., Neftyanoe khozyaystvo – Oil Industry, 2006, no. 12, pp. 122-125.

3. Zakirov S.N., Indrupskiy I.M, Levochkin R.N., Ostapchuk S.S., Neftyanoe khozyaystvo – Oil Industry, 2006, no. 12, pp. 40-43.

4. Zatsepin V.V., Chernikov E.V., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 2, pp. 44-47.

5. Luk'yanov Yu.V., Shuvalov A.V., Nasretdinov R.G., Neftyanoe khozyaystvo – Oil Industry, 2009, no. 3, pp. 44-47.

6. Malets O.N., Turdymatov A.N., Gaysin D.K., Pestreuova N.G., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 4, pp. 36-38.

7. Khinderaker L., N'e S., SPE 136316, 2010.

8. Zatsepin V.V., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 5, pp. 84-87.

9. Yakimenko G.Kh., Kosov A.A., Slesarev I.S., Vestnik TsKR Rosnedra, 2012, no. 1, pp. 10-16.

10. Christensen J.R., Stenby E.H., Review of WAG field experience, SPE Reservoir Evaluation and Engineering, 2001, April, pp. 97-106.

11. Shandrygin A.N., Lutfullin A., Current status of enhanced recovery Techniques in the fields of Russia, SPE 115712, 2008.

12. Joop de Kok, Abduladim A., Torsten Clemens, SPE 114658, 2008.

13. Latypov A.R., Afanas'ev I.S., Zakharov V.P., Ismagilov T.A., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 11, pp. 28-31.

14. Makatrov A.K., Fizicheskoe modelirovanie vodogazovogo vozdeystviya na zalezhi nefti v oslozhnennykh gorno-geologicheskikh usloviyakh (Physical modeling of WAG on oil reserves in the complicated geological conditions): thesis of the candidate of Technical sciences, Ufa, 2006.

15. Stepanova G.S., Gazovye i vodogazovye metody vozdeystviya na neftyanye plasty (Gas and water-gas methods of influence on oil reservoirs), Moscow: Gazoil press Publ., 2006, 200 p.

16. Surguchev M.L., Vtorichnye i tretichnye metody uvelicheniya nefteotdachi plastov (Secondary and tertiary methods of enhanced oil recovery), Moscow: Nedra Publ., 1985, 308 p.

Key words: associated gas utilization, gas injection, miscible displacement, oil recovery increasing.

International experience analysis of the gas injection technologies implementation as the enhanced oil recovery method indicates a high degree of the success in the context of the increased oil recovery. The relation between the extra oil recovery and the volume of associated gas injected as well as the relation between the extra oil recovery and the methane fraction in the associated gas were obtained in the course of the works. Assessment of the technical and economic efficiency of the associated gas injection implementation on Gazprom neft JSC oil fields for the purpose of enhanced oil recovery was carried out.

References

1. Baykov N.M., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 6, pp. 105-107.

2. Gumerov A.G., Bazhaykin S.G., Yusupov O.M. et al., Neftyanoe khozyaystvo – Oil Industry, 2006, no. 12, pp. 122-125.

3. Zakirov S.N., Indrupskiy I.M, Levochkin R.N., Ostapchuk S.S., Neftyanoe khozyaystvo – Oil Industry, 2006, no. 12, pp. 40-43.

4. Zatsepin V.V., Chernikov E.V., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 2, pp. 44-47.

5. Luk'yanov Yu.V., Shuvalov A.V., Nasretdinov R.G., Neftyanoe khozyaystvo – Oil Industry, 2009, no. 3, pp. 44-47.

6. Malets O.N., Turdymatov A.N., Gaysin D.K., Pestreuova N.G., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 4, pp. 36-38.

7. Khinderaker L., N'e S., SPE 136316, 2010.

8. Zatsepin V.V., Neftyanoe khozyaystvo – Oil Industry, 2011, no. 5, pp. 84-87.

9. Yakimenko G.Kh., Kosov A.A., Slesarev I.S., Vestnik TsKR Rosnedra, 2012, no. 1, pp. 10-16.

10. Christensen J.R., Stenby E.H., Review of WAG field experience, SPE Reservoir Evaluation and Engineering, 2001, April, pp. 97-106.

11. Shandrygin A.N., Lutfullin A., Current status of enhanced recovery Techniques in the fields of Russia, SPE 115712, 2008.

12. Joop de Kok, Abduladim A., Torsten Clemens, SPE 114658, 2008.

13. Latypov A.R., Afanas'ev I.S., Zakharov V.P., Ismagilov T.A., Neftyanoe khozyaystvo – Oil Industry, 2007, no. 11, pp. 28-31.

14. Makatrov A.K., Fizicheskoe modelirovanie vodogazovogo vozdeystviya na zalezhi nefti v oslozhnennykh gorno-geologicheskikh usloviyakh (Physical modeling of WAG on oil reserves in the complicated geological conditions): thesis of the candidate of Technical sciences, Ufa, 2006.

15. Stepanova G.S., Gazovye i vodogazovye metody vozdeystviya na neftyanye plasty (Gas and water-gas methods of influence on oil reservoirs), Moscow: Gazoil press Publ., 2006, 200 p.

16. Surguchev M.L., Vtorichnye i tretichnye metody uvelicheniya nefteotdachi plastov (Secondary and tertiary methods of enhanced oil recovery), Moscow: Nedra Publ., 1985, 308 p.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

01.06.2021
29.05.2021
25.05.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина