A simple and robust approach to modeling three-phase equilibrium in petroleum mixtures containing water

UDK: 622.276, 532.529
DOI: 10.24887/0028-2448-2025-12-56-62
Key words: PVT modeling, compositional modeling, three-phase equilibrium, free-water flash (FWF) model, Newton's method, water, equation of state
Authors: V.L. Malyshev (Ufa State Petroleum Technological University, RF, Ufa); E.F. Moiseeva (Ufa State Petroleum Technological University, RF, Ufa); A.L. Remizov (Ufa State Petroleum Technological University, RF, Ufa); E.S. Ivanaevskaya (Ufa State Petroleum Technological University, RF, Ufa); D.O. Isaev (Gazprom Neft Companу Group, RF, Saint Petersburg); A.M. Andrianova (Gazprom Neft Companу Group, RF, Saint Petersburg); S.V. Zamakhov (NEDRA LLC, RF, Saint Petersburg); D.D. Kanev (NEDRA LLC, RF, Saint Petersburg)

An algorithm for modeling three-phase equilibrium in multicomponent petroleum mixtures containing water is presented. The relevance of this work is defined by the requirement for accurate prediction of the phase behavior of water-containing reservoir fluids at all field development stages. It is important for preventing flow assurance issues associated with hydrate formation. Existing methods (direct Gibbs energy minimization) are often computationally expensive and complex to implement, while simplified algorithms may not be stable enough, especially with a significant increase in the number of components. The proposed approach combines several previously developed techniques: the generation of initial equilibrium constants based on stability analysis; the application of a simplified model for hydrocarbon solubility in water (reduces the three-phase equilibrium problem to a pseudo-two-phase problem); the use of the Newton method for solving the system of equations. The algorithm is implemented using the Soave-Redlich-Kwong equation of state and tested on several mixtures, including simple ternary systems and multicomponent gas-condensate mixtures with compositions corresponding to real petroleum reservoir fluids. A comparison of the calculation results obtained using the developed software module with data from the PVTSim software was conducted. It is shown that even the simplified free-water flash (FWF) model provides good agreement with the commercial software data, while solving the equilibrium problem improves the accuracy of the results, reducing the average absolute relative error to less than one percent. The algorithm demonstrates high stability across the entire range of thermobaric conditions, making it a practical tool for PVT modeling.

References

1. Andrianova A., Yudin E., Shestakov A. et al., Development of a hydrate-free operating mode model for gas lift wells, SPE-217651-MS, 2023,

DOI: https://doi.org/10.2118/217651-MS

2. Peng D.Y., Robinson D.B., Two and three phase equilibrium calculations for systems containing water, The Canadian Journal of Chemical Engineering, 1976, V. 54,

no. 6, pp. 595–599, DOI: https://doi.org/10.1002/cjce.5450540620

3. Peng D.Y., Robinson D.B., A new two-constants equation of state, Industrial and Engineering Chemistry. Fundamentals, 1976, V. 1, pp. 59–64,

DOI: https://doi.org/10.1021/i160057a011

4. Aksenov O.A., Kozlov M.G., Usov E.V. et al., Implementation of methodology to calculate three-phase equilibrium of hydrocarbons and water phase (In Russ.), Neft’. Gaz. Novatsii, 2022, no. 12, pp. 38–43.

5. Michelsen M.L., The isothermal flash problem. Part I. Stability, Fluid Phase Equilibria, 1982, V. 9, no. 1, pp. 1–19, DOI: https://doi.org/10.1016/0378-3812(82)85001-2

6. Xuesong Ma, Shuhong Wu, Gang Huang, Tianyi Fan, Three-phase equilibrium calculations of water/hydrocarbon/nonhydrocarbon systems based on the equation of state (EOS) in thermal processes, ACS Omega, 2021, no. 6(50), pp. 34406–34415, DOI: https://doi.org/10.1021/acsomega.1c04522

7. Ruixue Li, Huazhou Andy Li, Improved three-phase equilibrium calculation algorithm for water/hydrocarbon mixtures, Fuel, 2019, V. 244, pp. 517–527,

DOI: https://doi.org/10.1016/j.fuel.2019.02.026

8. Yushchenko T.S., Mathematical modeling of three-phase equilibrium in natural gas condensate systems in the presence of a mineralized water solution (In Russ.), Trudy MFTI, 2015, V. 7, no. 2(26), pp. 70–82.

9. Mahmudi M., Sadeghi M.T., A novel three pseudo-component approach (ThPCA) for thermodynamic description of hydrocarbon-water systems, Journal of Petroleum Exploration and Production Technology, 2014, no. 4, pp. 281–289, DOI: https://doi.org/10.1007/s13202-013-0072-z

10. Ruixue Li, Huazhou Andy Li, New two-phase and three-phase Rachford-Rice algorithms based on free-water assumption for the Three-Fluid-Phase VLLE Flash Calculation, The Canadian Journal of Chemical Engineering, 2018, V. 96, no. 1, pp. 390–403, DOI: https://doi.org/10.1002/cjce.23018

11. Yiping Tang, Sanjoy Saha, An efficient method to calculate three-phase free-water flash for water−hydrocarbon systems, Industrial & Engineering Chemistry Research, 2003, no. 42(1), pp. 189–197, DOI: https://doi.org/10.1021/ie010785x

12. Lapene A., Nichita D.V., Debenest G., Quintard M., Three-phase free-water flash calculations using a new Modified Rachford–Rice equation, Fluid Phase Equilibria, 2010, V. 297, no. 1, pp. 121–128, DOI: https://doi.org/10.1016/j.fluid.2010.06.018

13. Hinojosa-Gómez H., Solares-Ramírez J., Bazúa-Rueda E.R., An improved algorithm for the three-fluid-phase VLLE flash calculation, AIChE J., 2015, no. 61,

pp. 3081–3093, DOI: https://doi.org/10.1002/aic.14946

14. Nazari M., Asadi M.B., Zendehboudi S., A new efficient algorithm to determine three-phase equilibrium conditions in the presence of aqueous phase: Phase stability and computational cost, Fluid Phase Equilibria, 2019, V. 486, pp. 139–158, DOI: https://doi.org/10.1016/j.fluid.2018.12.013

15. Nichita D.V., Gomez S., Luna-Ortiz E., Multiphase equilibria calculation by direct minimization of Gibbs free energy using the tunnelling global optimization method, Journal of Canadian Petroleum Technology, 2004, no. 43, DOI: https://doi.org/10.2118/04-05-TN2

16. Brusilovskiy A.I., Fazovye prevrashcheniya pri razrabotke mestorozhdeniy nefti i gaza (Phase transformations in the development of oil and gas fields), Moscow: Graal’ Publ., 2002, 575 p.

17. Nichita D.V., Broseta D., De-Hemptinne J.C., Multiphase equilibrium calculation using reduced variables, Fluid Phase Equilibria, 2006, V. 246, no. 1–2, pp. 15–27,

DOI: https://doi.org/10.1016/j.fluid.2006.05.016

18. Connolly M., Pan H., Tchelepi H., Three-phase equilibrium computations for hydrocarbon–water mixture using a reduced variables method, Industrial & Engineering Chemistry Research, 2019, no. 58(32), pp. 14954–14974, https://doi.org//10.1021/acs.iecr.9b00695

19. Wagner W., Pruss A., The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific, Journal of Physical and Chemical Reference Data, 2002, no. 31(2), pp. 387–535, DOI: https://doi.org/10.1063/1.1461829

20. Whitson C.H., Brule M.R., Phase behavior, SPE, 2000, 233 p., DOI: https://doi.org/10.29172/5eb78870-d202-4a15-9cf0-1e9e04b107ac

21. Malyshev V.L., Moiseeva E.F., Legkovoy G.V. et al., High-performance calculations of phase equilibrium for gas condensate systems based on the Soave–Redlich–Kwong equation of state (In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, 2025, V. 336, no. 12 (in print).

22. Soave G.S., Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 1972, V. 27, no. 6, pp. 1197–1203,

DOI: https://doi.org/10.1016/0009-2509(72)80096-4

23. Michelsen M.L., Whitson C.H., The negative flash, Fluid Phase Equilibria, 1989, V. 53, pp. 51–71, DOI: https://doi.org/10.1016/0378-3812(89)80072-X

24. Malyshev V.L., Nurgalieva Ya.F., Moiseeva E.F., Comparative study of empirical correlations and equations of state effectiveness for compressibility factor of natural gas determination, Periodico Tche Quimica, 2021, V. 18, no. 38, pp. 188–213, DOI: https://doi.org/10.52571/PTQ.v18.n38.2021.14_MALYSHEV_pgs_188_213

25. Malyshev V.L., Remizov A.L., Ivanaevskaya E.S. et al., Application of a compositional calculator and adaptation of PVT calculations to real field data with abnormal fluid properties (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2025, no. 9, pp. 42–48, DOI: https://doi.org/10.24887/0028-2448-2025-9-42-48


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Юбилей Великой Победы

Pobeda80_logo_main.png В юбилейном 2025 году подготовлены: 
   - специальная подборка  статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны;  
   - списки авторов публикаций журнала - участников боев и участников трудового фронта

Press Releases

11.12.2025
08.11.2025
17.10.2025
25.09.2025
23.09.2025