Development of a controlled carbonate core aging method using carboxylic acids

UDK: 622.276.031.011.43:550.822.3
DOI: 10.24887/0028-2448-2025-10-80-85
Key words: carbonate core, wettability, core аging, carboxylic acids
Authors: V.E. Vakhmistrov (VNIIneft JSC, RF, Moscow); E.V. Yakupova (VNIIneft JSC, RF, Moscow); G.V. Sansiev (Zarubezhneft JSC, RF, Moscow); S.S. Urazov (Zarubezhneft JSC, RF, Moscow)

The aim of this work is to develop an oil-free method for controlled aging of carbonate core to achieve a target wettability. Aging cores without crude oil is important when the oil contains a significant fraction of asphaltene-resin-paraffin deposits, which creates a risk of core plugging during oil-based aging. It helps to reduce time and cost of the aging procedure and enables building a library of samples with uniform properties (for screening chemical formulations). The method was validated for conditions of a hydrophobic carbonate reservoir at the West-Khosedayusskoe oil field (contact angle θ ≈ 110–120°). The authors used 0,01 M monobasic carboxylic acids (C12–C18) in a low-molecular alcohol with 5–15 % water added. Both static (≈ 24 h, 25 °C) and dynamic aging were implemented. Rock  model Indiana Limestone core. Metrics: static contact angle θ and displacement efficiency for water  oil and water  crude oil tests. Adding water is critical for the rate and degree of hydrophobization; increasing alkyl chain length raises θ (C18 > C16 > C14 > C12); a parameter «window» was identified that yields the target θ ≈ 110–120°; the displacement efficiency with crude oil decreases to about 57% versus 67% without aging, which integrally reflects hydrophobization. A reproducible, scalable, and operationally convenient carbonate core-aging method was proposed that provides controlled wettability, enabling the creation of a representative sample library.

References

1. Kumar S., Burukhin A.A., Cheremisin A.N., Grishin P.A., Wettability of carbonate reservoirs: effects of fluid and aging, SPE-201834-MS, 2020,

DOI: https://doi.org/10.2118/201834-MS

2. Thomas M.M. еt al., Adsorption of organic compounds on carbonate minerals: 1. Model compounds and their influence on mineral wettability, Chemical Geology, 1993, V. 109, pp. 201–213, DOI: https://doi.org/10.1016/0009-2541(93)90070-Y

3. Hopkins P.A., Strand S., Puntervold T. et al., The adsorption of polar components onto carbonate surfaces and the effect on wetting, Journal of Petroleum Science and Engineering, 2016, V. 147, pp. 381–387, DOI: https://doi.org/10.1016/j.petrol.2016.08.028

4. Sachdeva J.S., Sripal E.A., Nermoen A. et al., A laboratory scale approach to wettability restoration in chalk core samples, E3S Web of Conferences, 2019, V. 89,

DOI: https://doi.org/10.1051/e3sconf/20198903003

5. Al-Mahrooqi S.H., Grattoni C.A., Muggeridge A.H., Jing X.D., Wettability alteration during aging: the application of Nmr to monitor fluid redistribution, Proceedings of Symposium of the Society of Core Analysts, Toronto, Canada, 2005, pp. 1–12, URL: https://jgmaas.com/SCA/2005/SCA2005-10.pdf

6. Fernø M.A., Torsvik M., Haugland S., Graue A., Dynamic laboratory wettability alteration, Energy & Fuels, 2010, V. 24(7), pp. 3950–3958,

DOI: https://doi.org/10.1021/ef1001716

7. Gomari S.R., Hamouda A.A., Effect of fatty acids, water composition and pH on the wettability alteration of calcite surface, Journal of Petroleum Science and Engineering, 2006, V. 50, pp. 140–150, DOI: https://doi.org/10.1016/j.petrol.2005.10.007

8. Cao Z., Daly M., Clémence L., Luke M. еt al., Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods, Applied Surface Science, 2016, V. 378, pp. 320–329, DOI: https://doi.org/10.1016/j.apsusc.2016.03.205

9. Tokareva E.V., Tkachev I.V., Sansiev G.V. еt al., Study of the process of hydrophobization of carbonate rock with organic acids (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 3, pp. 73–76, DOI: https://doi.org/10.24887/0028-2448-2022-3-73-76

10. Ivanova A., Cheremisin A.N., Khayrullin M., Sansiev G., Microstructural imaging and characterization of organic matter presented in carbonate oil reservoirs,

SPE-195466-MS, 2019, DOI: https://doi.org/10.2118/195456-ms

11. Mihajlović S., Sekulić Ž., Daković A. et al., Surface properties of natural calcite filler treated with stearic acid, Ceramics-Silikaty, 2009, V. 53, pp. 268–275,

URL: https://www.ceramics-silikaty.cz/2009/pdf/2009_04_268.pdf

12. Al-Busaidi I.K., Al-Maamari R.S., Karimi M., Naser J., Effect of different polar organic compounds on wettability of calcite surfaces, Journal of Petroleum Science and Engineering, 2019, V. 180, pp. 569–583, DOI: https://doi.org/10.1016/j.petrol.2019.05.080

13. Karimi M., Al-Maamari R.S., Ayatollahi S., Mehranbod N., Mechanistic study of wettability alteration of oil-wet calcite: the effect of magnesium ions in the presence and absence of cationicsurfactant, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, V. 482, pp. 403–415, DOI: https://doi.org/10.1016/j.colsurfa.2015.07.001

14. API Recommended Practice 40: Recommended Practices for Core Analysis. – 2nd ed., 1998. – https://energistics.org/sites/default/files/2022-10/rp40.pdf

15. NIOSH Pocket Guide to Chemical Hazards: Acetone. CDC/NIOSH, SPE-906-MS, 1964.

16. Vakhmistrov V.E., Lobova Yu.A., Petrakov A.M., Fomkin A.V., Densimetric method of oil measurement in flow experiment products (In Russ.), Neftyanoe khozyaystvo, 2023, no. 2, pp. 38–42, DOI: https://doi.org/10.24887/0028-2448-2023-2-38-41



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Юбилей Великой Победы

Pobeda80_logo_main.png В юбилейном 2025 году подготовлены: 
   - специальная подборка  статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны;  
   - списки авторов публикаций журнала - участников боев и участников трудового фронта

Press Releases

17.10.2025
14.10.2025
25.09.2025
23.09.2025
12.09.2025