The article discusses the use of the open source software tool MATLAB Reservoir Simulation Toolbox (MRST) for modeling fracture evolution and fluid filtration in an oil-saturated reservoir. Data structures and computational methods for creating tools for modeling and simulating filtration and geomechanical processes are presented. A phenomenological computational model of the occurrence and development of man-made fractures is proposed, taking into account the dynamics of changes in pressure fields and regional stresses. Hydrodynamic modeling of oil displacement by water in a fractured-porous reservoir with changing fracturing is performed on a two-phase filtration model in a real reservoir system. Calculations were made for various modes of the production-injection well complex for different geological and technological parameters, which enables to determine the optimal production mode. A detailed picture of the dynamics of reservoir flooding and oil displacement is obtained with given parameters of the injection and production wells. Particular attention is paid to modeling the propagation of a fracture in a reservoir and modeling displacement under the condition of fracture propagation taking into account regional stresses and hydraulic resistances. The results confirm the possibility of using MRST for research and educational tasks of studying multiphase filtration of reservoir fluids, modeling the development of fields, including low-permeability reservoirs.
References
1. Prishchepa O.M., The current state of the raw material base and production of hard-to-recover oil reserves in Russia (In Russ.), Mineral’nye resursy Rossii. Ekonomika i upravlenie, 2019, no. 5(168), pp. 14–20.
2. Lie K.A., An introduction to reservoir simulation using matlab/gnu octave: User guide for the MATLAB Reservoir Simulation Toolbox (MRST), Cambridge: Cambridge University Press, 2019, https://doi.org/10.1017/9781108591416
3. Lie K.A., Møyner O., Advanced modeling with the MATLAB Reservoir Simulation Toolbox, Cambridge: Cambridge University Press, September 2021.
4. Lie K.A., Krogstad S., Ligaarden I.S. et al., Open-source MATLAB implementation of consistent discretisations on complex grids, Computational Geosciences, 2012,
V. 16, no. 2, pp. 297–322, DOI: https://doi.org/10.1007/s10596-011-9244-4
5. Krogstad S., Lie K.A., Møyner O. et al., MRST-AD – an open-source framework for rapid prototyping and evaluation of reservoir simulation problems, SPE-173317-MS, 2015, DOI: https://doi.org/10.2118/173317-MS
6. Salmani N., Fatehi R., Azin R., A double-scale method for near-well flow in reservoir simulation, Journal of Petroleum Science and Engineering, 2022, V. 208,
DOI: https://doi.org/10.1016/j.petrol.2021.109487
7. Shlyapkin A.S., Tatosov A.V., On solving the fracturing problem in a hybrid PKN-KGD formulation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2020, no. 12,
pp. 118–121, DOI: https://doi.org/10.24887/0028-2448-2020-12-118-121
8. Chernyy S.G. et al., Metody modelirovaniya zarozhdeniya i rasprostraneniya treshchin (Methods for modeling crack initiation and propagation), Novosibirsk: Publ. of SB RAS, 2016, 312 p.
9. Paullo Munoz L.F., Mejia C., Rueda J., Roehl D., Pseudo-coupled hydraulic fracturing analysis with displacement discontinuity and finite element methods, Engineering Fracture Mechanics, 2022, V. 274, DOI: https://doi.org/10.1016/j.engfracmech.2022.108774
10. Yun Zhou, Diansen Yang, Xi Zhang et al., Numerical investigation of the interaction between hydraulic fractures and natural fractures in porous media based on an enriched FEM, Engineering Fracture Mechanics, 2020, V. 235, DOI: https://doi.org/10.1016/j.engfracmech.2020.107175
11. Detournay E., Cheng A.H.-D., McLennan J.D., A poroelastic PKN hydraulic fracture model based on an explicit moving mesh algorithm, Journal of Energy Resource Technology, 1990, V. 112(4), pp. 224–230, DOI: https://doi.org/10.1115/1.2905762
12. Baikov V.A., Bulgakova G.T., Il’yasov A.M., Kashapov D.V., Estimation of the geometric parameters of a reservoir hydraulic fracture, Fluid Dynamics, 2018, V. 53(5), pp. 642–653, DOI: https://doi.org/10.1134/S0015462818050038
13. Fedorov K.M., Shevelev A.P., Gil’manov A.Ya. et al., A new approach for modeling the development of injection-induced hydraulic fractures (In Russ.), Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2024, no. 91, pp. 125–140, DOI: https://doi.org/10.17223/19988621/91/11
14. Gasanov I.R., Dzhamalbekov M.A., Determination of the hydraulic resistance coefficient for oil filtration in fractured formations (In Russ.), Nauka, tekhnika i obrazovanie, 2020, no. 2(66), pp. 67–69.
Юбилей Великой Победы![]() - специальная подборка статей журнала, посвященных подвигу нефтяников в годы Великой Отечественной войны; - списки авторов публикаций журнала - участников боев и участников трудового фронта. |