Computer modeling software for applied engineering analysis in the field of assessing the hydrochemical processes of oil and gas production

UDK: 622.276.438:628.3(470.4/5)
DOI: 10.24887/0028-2448-2021-8-81-83
Key words: carbonates, sulphates, stability and compatibility of reservoir waters, hydrogen sulphide, ionic iron, iron sulphide, reservoir flooding, waterflooding agent quality standards
Authors: V.N. Kozhin (SamaraNIPIneft LLC, RF, Samara), A.V. Grishagin (SamaraNIPIneft LLC, RF, Samara), O.S. Fedotkina (SamaraNIPIneft LLC, RF, Samara), D.V. Kashaev (SamaraNIPIneft LLC, RF, Samara), O.V. Gladunov (Samaraneftegas JSC, RF, Samara)

The article presents a brief description of the Samaraneftegas’s software for determining the precipitation of calcium carbonate and sulphate, the formation of iron sulphide when mixing different types of water with each other and predictive rationing of the quality of wastewater when injected into reservoirs. The article highlights the features of computer programs for engineering calculation methods and the scope of their application in problems for various technological processes of oil and gas production. The calculation program for the assessment of salt deposition in the determination of calcium carbonate (CaCO3) takes into account the dependence of all constants on mineralization, in the determination of calcium sulphate (CaSO4) uses three methods: with strict conditions, averaged and taking into account elevated temperature and magnesium ions. The Iron Sulphide Precipitation Assessment (FeS) program takes into account the excess of one component over another (H2S and Fe2+). The program for rationing water quality for flooding takes into account a unique base of a reference sample of values of indirect search signs for recognizing the type of reservoir of an oil deposit. The choice of the reservoir type with engineering calculations of the stability and compatibility of reservoir waters using computational programs that take into account the unique properties and high mineralization of the waters of the deposits of the Volga-Ural region allows choosing the optimal strategy for organizing the system of oil collection, oil treatment, reservoir pressure maintenance and waste water disposal at all stages of the design and operation of oilfield facilities. The programs are also suitable for use in the selection of well silencing fluid and the prevention of salt deposits in the process of oil production.

References

1. Certificate of state registration of a computer program no. 2012610037. KARSULM. Otsenka stabil'nosti i sovmestimosti plastovykh vod po karbonatu i sul'fatu kal'tsiya (KARSULM. Assessment of the stability and compatibility of formation waters for calcium carbonate and sulphate), Authors: Andreev V.I., Grishagin A.V.

2. Allison, J.D., D.S. Brown, Novo-Gradac K.J., User’s Manual. EPA/600/3-91/021. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems. Version 3.0., Athens, Georgia: EPA, 1991.

3. Parkhurst D.L., Appelo C.A.J. User’s guide to PHREEQC (version 2) — a computer program forspeciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Denver, Colorado, USA, 1999.

4. Andreev V.I., Grishagin A.V., Red'kin I.I., Matematicheskoe modelirovanie karbonatnoy stabil'nosti i sovmestimosti plastovykh vod v sistemakh sbora, podgotovki i utilizatsii stochnykh vod (Mathematical modeling of carbonate stability and compatibility of formation waters in wastewater collection, treatment and disposal systems), Proceedings of Giprovostokneft, Kuybyshev, 1985, рр. 148–154.

5. Grishagin A.V., Andreev V.I., Formation water stability and compatibility evaluation for the oil fields of the Volga Urals region by carbonate and calcium sulfate (In Russ.), Neft', gaz, novatsii, 2012, no. 3, pp. 24-28.6. Certificate of state registration of a computer program no. 2014616232. FeS. Programma dlya vychisleniya soderzhaniya sul'fida zheleza pri smeshenii serovodorodsoderzhashchikh i zhelezosoderzhashchikh vod Otsenka stabil'nosti i sovmestimosti plastovykh vod po karbonatu i sul'fatu kal'tsiya (FeS. A program for calculating the content of iron sulfide when mixing hydrogen sulfide and iron-containing waters Assessment of the stability and compatibility of formation waters for carbonate and calcium sulfate), Authors: Andreev V.I., Grishagin A.V.

7. Certificate of state registration of a computer program no. 2014616051. PROGNorm. Prognoznoe normirovanie kachestva stochnykh vod dlya vnutrikonturnogo zavodneniya issleduemykh neftyanykh zalezhey (PROGNorm. Predictive standardization of wastewater quality for in-circuit waterflooding of the studied oil deposits), Authors: Grishagin A.V., Andreev V.I.

8. Grishagin A.V., Andreev V.I., Substantiation of quality standards of reservoir and surface waters or their mixtures at oil fields reservoirs flooding (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2009, no. 8, pp. 96–98.

9. Grishagin A.V., Andreev V.I., Vakulenko S.N., On expedience of joint or individual gathering of heterogeneous products out coming from oil wells (In Russ.), Neft', gaz, novatsii, 2011, no. 8, pp. 46–51.

10. Grishagin A.V., Andreev V.I., Manasyan  A.E. et al., Formation waters or their mixtures with surface water applicability as possible agent for reservoir water-flooding purposes (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 11, pp. 44–49.

11. Grishagin A.V., Akif'eva L.A., Dolganova G.I. et al., Geological-and-hydrological substantiation brine pumping into absorbing beds (geological horizon) in Samara Region (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 6, pp. 48–51.

12. Grishagin A.V., Fedotkina O.S., Kruglov E.A., Veprinyak P.A., On aspects referred to the selection of the source for mixing-up the well-kill fluids for central and southern groups of Samaraneftegaz JSC oil fields (In Russ.), Nauchno-tekhnicheskiy Vestnik OAO “NK “Rosneft'”, 2013, no. 3, pp. 37–42.

The article presents a brief description of the Samaraneftegas’s software for determining the precipitation of calcium carbonate and sulphate, the formation of iron sulphide when mixing different types of water with each other and predictive rationing of the quality of wastewater when injected into reservoirs. The article highlights the features of computer programs for engineering calculation methods and the scope of their application in problems for various technological processes of oil and gas production. The calculation program for the assessment of salt deposition in the determination of calcium carbonate (CaCO3) takes into account the dependence of all constants on mineralization, in the determination of calcium sulphate (CaSO4) uses three methods: with strict conditions, averaged and taking into account elevated temperature and magnesium ions. The Iron Sulphide Precipitation Assessment (FeS) program takes into account the excess of one component over another (H2S and Fe2+). The program for rationing water quality for flooding takes into account a unique base of a reference sample of values of indirect search signs for recognizing the type of reservoir of an oil deposit. The choice of the reservoir type with engineering calculations of the stability and compatibility of reservoir waters using computational programs that take into account the unique properties and high mineralization of the waters of the deposits of the Volga-Ural region allows choosing the optimal strategy for organizing the system of oil collection, oil treatment, reservoir pressure maintenance and waste water disposal at all stages of the design and operation of oilfield facilities. The programs are also suitable for use in the selection of well silencing fluid and the prevention of salt deposits in the process of oil production.

References

1. Certificate of state registration of a computer program no. 2012610037. KARSULM. Otsenka stabil'nosti i sovmestimosti plastovykh vod po karbonatu i sul'fatu kal'tsiya (KARSULM. Assessment of the stability and compatibility of formation waters for calcium carbonate and sulphate), Authors: Andreev V.I., Grishagin A.V.

2. Allison, J.D., D.S. Brown, Novo-Gradac K.J., User’s Manual. EPA/600/3-91/021. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems. Version 3.0., Athens, Georgia: EPA, 1991.

3. Parkhurst D.L., Appelo C.A.J. User’s guide to PHREEQC (version 2) — a computer program forspeciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Denver, Colorado, USA, 1999.

4. Andreev V.I., Grishagin A.V., Red'kin I.I., Matematicheskoe modelirovanie karbonatnoy stabil'nosti i sovmestimosti plastovykh vod v sistemakh sbora, podgotovki i utilizatsii stochnykh vod (Mathematical modeling of carbonate stability and compatibility of formation waters in wastewater collection, treatment and disposal systems), Proceedings of Giprovostokneft, Kuybyshev, 1985, рр. 148–154.

5. Grishagin A.V., Andreev V.I., Formation water stability and compatibility evaluation for the oil fields of the Volga Urals region by carbonate and calcium sulfate (In Russ.), Neft', gaz, novatsii, 2012, no. 3, pp. 24-28.6. Certificate of state registration of a computer program no. 2014616232. FeS. Programma dlya vychisleniya soderzhaniya sul'fida zheleza pri smeshenii serovodorodsoderzhashchikh i zhelezosoderzhashchikh vod Otsenka stabil'nosti i sovmestimosti plastovykh vod po karbonatu i sul'fatu kal'tsiya (FeS. A program for calculating the content of iron sulfide when mixing hydrogen sulfide and iron-containing waters Assessment of the stability and compatibility of formation waters for carbonate and calcium sulfate), Authors: Andreev V.I., Grishagin A.V.

7. Certificate of state registration of a computer program no. 2014616051. PROGNorm. Prognoznoe normirovanie kachestva stochnykh vod dlya vnutrikonturnogo zavodneniya issleduemykh neftyanykh zalezhey (PROGNorm. Predictive standardization of wastewater quality for in-circuit waterflooding of the studied oil deposits), Authors: Grishagin A.V., Andreev V.I.

8. Grishagin A.V., Andreev V.I., Substantiation of quality standards of reservoir and surface waters or their mixtures at oil fields reservoirs flooding (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2009, no. 8, pp. 96–98.

9. Grishagin A.V., Andreev V.I., Vakulenko S.N., On expedience of joint or individual gathering of heterogeneous products out coming from oil wells (In Russ.), Neft', gaz, novatsii, 2011, no. 8, pp. 46–51.

10. Grishagin A.V., Andreev V.I., Manasyan  A.E. et al., Formation waters or their mixtures with surface water applicability as possible agent for reservoir water-flooding purposes (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2013, no. 11, pp. 44–49.

11. Grishagin A.V., Akif'eva L.A., Dolganova G.I. et al., Geological-and-hydrological substantiation brine pumping into absorbing beds (geological horizon) in Samara Region (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 6, pp. 48–51.

12. Grishagin A.V., Fedotkina O.S., Kruglov E.A., Veprinyak P.A., On aspects referred to the selection of the source for mixing-up the well-kill fluids for central and southern groups of Samaraneftegaz JSC oil fields (In Russ.), Nauchno-tekhnicheskiy Vestnik OAO “NK “Rosneft'”, 2013, no. 3, pp. 37–42.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

24.11.2021
23.11.2021
02.11.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина