New Approaches to gaslift and ESP well stock production management

UDK: 622.276.53
DOI: 10.24887/0028-2448-2021-6-67-73
Key words: production management, optimization of technological modes, integrated modeling
Authors: E.V. Yudin (Gazpromneft NTC LLC, RF, Saint-Petersburg), R.A. Habibullin (Gazpromneft NTC LLC, RF, Saint-Petersburg), N.A. Smirnov (Gazpromneft NTC LLC, RF, Saint-Petersburg), G.A. Piotrovsky (Gazpromneft-Digital Solutions, RF, Saint-Petersburg; Research and Educational Centre Gazpromneft-Polytech, RF, Saint-Petersburg), A.O. Vodopyan (Gazpromneft-Digital Solutions, RF, Saint-Petersburg; Research and Educational Centre Gazpromneft-Polytech, RF, Saint-Petersburg), M.V. Petrova (Gazpromneft-Digital Solutions, RF, Saint-Petersburg; Research and Educational Centre Gazpromneft-Polytech, RF, Saint-Petersburg), S.V. Zamakhov (Gazpromneft-Digital Solutions, RF, Saint-Petersburg; Research and Educational Centre Gazpromneft-Polytech, RF, Saint-Petersburg), G.A. Chigarev (Gazpromneft NTC LLC, RF, Saint-Petersburg), M.A. Novikov (Gazpromneft-Noyabrskneftegas JSC, RF, Noyabrsk), V.O. Derevyanko (Gazpromneft-Noyabrskneftegas JSC, RF, Noyabrsk), A.I. Kiyan (Gazpromneft-Orenburg LLC, Orenburg)

Methodical and algorithmic description of tool for complex gaslift and ESP well stock production management is presented in the paper. The presented solutions fully cover the processes of automated creation and adaptation to actual data of physical models of well drainage area, gas-liquid elevator with submersible and surface equipment and oil gathering network, as well as algorithms of integration and management of these models to solve the problems of operational targeted lifting costs optimization taking into account physical processes occurring in each element of the system. The used models cover the whole range of physical phenomena necessary for accounting within the framework of the tasks being solved, being at the same time computationally non labor-intensive and not requiring manual adaptation to actual values, as well as additional initial data for creation, except for those contained in the well and its equipment datasheets. The algorithms described in the article allow solving problems of group optimization of operating modes of production wells on the basis of physical models in order to minimize lifting costs. Thus, the tool presented in the article allows, on the basis of a standard set of initial data, to perform group optimization of operating modes of production wells without changing equipment in order to maximize production without increasing technological costs, or to minimize technological costs without decreasing production. Besides, it is possible to integrate the presented tool with algorithms of calculation of effect from equipment change.

References

1. Basniev K.S., Dmitriev N.M., Rozenberg G.D., Neftegazovaya gidromekhanika (Oil and Gas Hydromechanics), Izhevsk: Publ. of Institute of Computer Science, 2005, 544 p.

2. Brill J.P., Mukherjee H., Multiphase flow in wells, SPE Monograph, Henry L. Dogherty Series, V.17, 1999, 164 p.

3. Ansari A.M. et al., A comprehensive mechanistic model for upward two-phase flow in wellbores (In Russ.), SPE 108506-PA, 1990, https://doi.org/10.2118/ 108506-PA.

4. Yudin E.V., Khabibullin R.A., Galyautdinov I.M. et al., Modeling of a gas-lift well operation with an automated gas-lift gas supply control system (In Russ.),

SPE-196816-MS, 2019, https://doi.org/10.2118/196816-MS.

5. Lubnin A.A., Yudin E.V., Fazlytdinov R.F. et al., A new approach of gas lift wells production optimization on offshore fields (In Russ.), SPE-181903-RU, 2016, https://doi.org/10.2118/181903-MS

6. Marquez R.A, Prado M.G., A new robust model for natural separation efficiency, SPE-80922-MS, 2003, https://doi.org/10.2118/80922-MS

7. Takacs G., Electrical submersible pumps manual, Cambridge, Elsevier, 2018, 564 p.

8. Krasnov V.A., Litvinenko K.V., Khabibullin R.A., An approach to account ESP head degradation in gassy wells for ESP frequency optimization, SPE-171338-MS, 2014, https://doi.org/10.2118/171338-MS

9. Perkins T.K., Critical and subsritical flow of multiphase mixtures through chokes, SPE-20633-PA, 1993, https://doi.org/10.2118/20633-PA.

10. Khabibullin R.A., Burtsev Ya.A., New approach for gas lift optimization calculations (In Russ.), SPE-176668-RU, 2015, https://doi.org/10.2118/176668-MS

11. Katsman M.M., Spravochnik po elektricheskim mashinam (Electric machines handbook), Moscow: Akademiya Publ., 2005, 480 p.

12. Charnyy I.A., Podzemnaya gidrogazodinamika (Underground fluid dynamics), Moscow: Gostoptekhizdat Publ., 1963, 397 p.

13. Khasanov M.M., Khabibullin R.A., Musabirov T.R., Krasnov V.A., Self consistent approach to construct inflow performance relationship for oil well (In Russ.), SPE-160782-RU, 2012, https://doi.org/10.2118/160782-MS

14. Khasanov M.M., Krasnov V.A., Guk V.Yu., Evaluation of reservoir parameters by production data analysis, SPE-117406-MS, 2008, https://doi.org/10.2118/ 117406-MS

15. Kermit E.B., Beggs H.D., The technology of artificial lift methods, Tulsa: PennWellBooks, 1984, 448 p.

16. Vogel J.V., Inflow performance relationships for solution-gas drive wells, JPT, 1968, V. 20, pp. 83-93.

17. Sudeev I.V., Timonov A.V., Guk V.Yu., Asmandiyarov R.N., The factor analysis of the new wells oil recovery change with use of non-stationary nodal analysis method (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2008, no. 11, pp. 58–61.

18. Krasnov V.A., Sudeev I.V., Yudin E.V. et al., Reservoir parameters evaluation using the production data analysis (In Russ.), Nauchno-tekhnicheskiy Vestnik OAO “NK “Rosneft'”, 2010, no. 1, pp. 30–34.

19. Krasnov V.A., Yudin E.V., Lubnin A.A., Well exploitation models to estimate some reservoir parameters using the production data analysis (In Russ.), Nauchno-tekhnicheskiy Vestnik OAO “NK “Rosneft'”, 2010, no. 2, pp. 34–38.

20. Kanin E.A., Krasnov V.A., The method for calculating the productivity of wells under transient behavior with an account of the lift characteristic of the well (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 6, pp. 84-89.

Methodical and algorithmic description of tool for complex gaslift and ESP well stock production management is presented in the paper. The presented solutions fully cover the processes of automated creation and adaptation to actual data of physical models of well drainage area, gas-liquid elevator with submersible and surface equipment and oil gathering network, as well as algorithms of integration and management of these models to solve the problems of operational targeted lifting costs optimization taking into account physical processes occurring in each element of the system. The used models cover the whole range of physical phenomena necessary for accounting within the framework of the tasks being solved, being at the same time computationally non labor-intensive and not requiring manual adaptation to actual values, as well as additional initial data for creation, except for those contained in the well and its equipment datasheets. The algorithms described in the article allow solving problems of group optimization of operating modes of production wells on the basis of physical models in order to minimize lifting costs. Thus, the tool presented in the article allows, on the basis of a standard set of initial data, to perform group optimization of operating modes of production wells without changing equipment in order to maximize production without increasing technological costs, or to minimize technological costs without decreasing production. Besides, it is possible to integrate the presented tool with algorithms of calculation of effect from equipment change.

References

1. Basniev K.S., Dmitriev N.M., Rozenberg G.D., Neftegazovaya gidromekhanika (Oil and Gas Hydromechanics), Izhevsk: Publ. of Institute of Computer Science, 2005, 544 p.

2. Brill J.P., Mukherjee H., Multiphase flow in wells, SPE Monograph, Henry L. Dogherty Series, V.17, 1999, 164 p.

3. Ansari A.M. et al., A comprehensive mechanistic model for upward two-phase flow in wellbores (In Russ.), SPE 108506-PA, 1990, https://doi.org/10.2118/ 108506-PA.

4. Yudin E.V., Khabibullin R.A., Galyautdinov I.M. et al., Modeling of a gas-lift well operation with an automated gas-lift gas supply control system (In Russ.),

SPE-196816-MS, 2019, https://doi.org/10.2118/196816-MS.

5. Lubnin A.A., Yudin E.V., Fazlytdinov R.F. et al., A new approach of gas lift wells production optimization on offshore fields (In Russ.), SPE-181903-RU, 2016, https://doi.org/10.2118/181903-MS

6. Marquez R.A, Prado M.G., A new robust model for natural separation efficiency, SPE-80922-MS, 2003, https://doi.org/10.2118/80922-MS

7. Takacs G., Electrical submersible pumps manual, Cambridge, Elsevier, 2018, 564 p.

8. Krasnov V.A., Litvinenko K.V., Khabibullin R.A., An approach to account ESP head degradation in gassy wells for ESP frequency optimization, SPE-171338-MS, 2014, https://doi.org/10.2118/171338-MS

9. Perkins T.K., Critical and subsritical flow of multiphase mixtures through chokes, SPE-20633-PA, 1993, https://doi.org/10.2118/20633-PA.

10. Khabibullin R.A., Burtsev Ya.A., New approach for gas lift optimization calculations (In Russ.), SPE-176668-RU, 2015, https://doi.org/10.2118/176668-MS

11. Katsman M.M., Spravochnik po elektricheskim mashinam (Electric machines handbook), Moscow: Akademiya Publ., 2005, 480 p.

12. Charnyy I.A., Podzemnaya gidrogazodinamika (Underground fluid dynamics), Moscow: Gostoptekhizdat Publ., 1963, 397 p.

13. Khasanov M.M., Khabibullin R.A., Musabirov T.R., Krasnov V.A., Self consistent approach to construct inflow performance relationship for oil well (In Russ.), SPE-160782-RU, 2012, https://doi.org/10.2118/160782-MS

14. Khasanov M.M., Krasnov V.A., Guk V.Yu., Evaluation of reservoir parameters by production data analysis, SPE-117406-MS, 2008, https://doi.org/10.2118/ 117406-MS

15. Kermit E.B., Beggs H.D., The technology of artificial lift methods, Tulsa: PennWellBooks, 1984, 448 p.

16. Vogel J.V., Inflow performance relationships for solution-gas drive wells, JPT, 1968, V. 20, pp. 83-93.

17. Sudeev I.V., Timonov A.V., Guk V.Yu., Asmandiyarov R.N., The factor analysis of the new wells oil recovery change with use of non-stationary nodal analysis method (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2008, no. 11, pp. 58–61.

18. Krasnov V.A., Sudeev I.V., Yudin E.V. et al., Reservoir parameters evaluation using the production data analysis (In Russ.), Nauchno-tekhnicheskiy Vestnik OAO “NK “Rosneft'”, 2010, no. 1, pp. 30–34.

19. Krasnov V.A., Yudin E.V., Lubnin A.A., Well exploitation models to estimate some reservoir parameters using the production data analysis (In Russ.), Nauchno-tekhnicheskiy Vestnik OAO “NK “Rosneft'”, 2010, no. 2, pp. 34–38.

20. Kanin E.A., Krasnov V.A., The method for calculating the productivity of wells under transient behavior with an account of the lift characteristic of the well (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 6, pp. 84-89.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

11.10.2021
07.10.2021
29.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина