Facies analysis of the Pokur formation around Novo-Chaselskoye and Zapadno-Chaselskoye fields

UDK: 550.8.072
DOI: 10.24887/0028-2448-2020-6-34-39
Key words: Pokur formation, facies, facies analysis, reservoir properties, seismic facies analysis
Authors: T.Yu. Alferova (IGIRGI JSC, RF, Moscow), R.V. Peisakhov (IGIRGI JSC, RF, Moscow), A.R. Minyazeva (IGIRGI JSC, RF, Moscow), O.V. Khusaeva (IGIRGI JSC, RF, Moscow), E.Yu. Arkhipova (IGIRGI JSC, RF, Moscow), A.V. Khramtsova (Tyumen Petroleum Research Center LLC, RF, Tyumen), T.E. Topalova (Tyumen Petroleum Research Center LLC, RF, Tyumen), A.A. Snokhin (Kynsko-Chaselskoye Neftegaz LLC, RF, Tyumen), R.R. Shakirov (Kynsko-Chaselskoye Neftegaz LLC, RF, Tyumen)

This paper describes the facies modeling results of the PK1 formation on the Novo-Chaselskoye and the Zapadno-Chaselskoye fields located in the north of Western Siberia. The target object (PK1 formation) is characterized by extremely high lateral and vertical heterogeneity, unstable properties and lithological variability. All these structural features of the object are due to its polygenic composition. According to regional data, the accumulation of the PK1 formation occurred within the coastal accumulative plain, periodically flooded by the sea. Four sediment parasequences were defined in the PK1 formation based on facial core analysis, log data interpretation and seismic: continental sediments (PK14), transition zone sediments (PK13, PK12) and coastal marine sediments (PK11). 2D facies maps were constructed for each parasequence. Relations between permeability and porosity were defined for each facies group, forecast maps of reservoir prospective zones were constructed. It was defined that sand sediments of river channels (PK14), tidal channels (PK13, PK12) and prefrontal beach areas (PK11) have the best reservoir properties. At the bottom of the PK1 formation there are river channel and tidal channel sediments which have the highest permeability. This factor can be one of the reasons of the early water breakthrough during the production drilling in the superimposed channel zones. Final results of this work let us determine the optimal wells positions to achieve planned production levels and reduce risks of the early water breakthrough.

References

1. Muromtsev V.S., Elektrometricheskaya geologiya peschanykh tel – litologicheskikh lovushek nefti i gaza (Electrometric geology of sand bodies - lithological traps of oil and gas), Leningrad: Nedra Publ., 1984, 260 p.

2. Zhemchugova V.A., Prakticheskoe primenenie rezervuarnoy sedimentologii pri modelirovanii uglevodorodnykh sistem (The practical application of reservoir sedimentology in the modeling of hydrocarbon systems), Moscow: Publ. of Gubkin University, 2014, 344 p.

3. Alekseev V.P., Litologo-fatsial'nyy analiz (Lithofacial analysis), Ekaterinburg: Publ. of USMA, 2002, 147 p.

4. Zhemchugova V.A., Berbenev M.O., Naumchev Yu.V., New seismic technologies for better field exploration (Case study of upper cretaceous reservoirs in West Siberia) (In Russ.), Tekhnologii seysmorazvedki, 2015, no. 3, pp. 80–88.

5. Ol'neva, T.V. Zhukovskaya E.A., Seismic facies analysis range of possibilities for the study of paleo fluvial systems (In Russ.), Geofizika, 2016, no. 2, pp. 2–9.

6. Kontorovich A.E., Ershov S.V., Kazanenkov V.A. et al., Cretaceous paleogeography of the West Siberian sedimentary basin (In Russ.), Geologiya i geofizika, 2014, V. 55, no. 5–6, pp. 745–776.

7. Nedolivko N.M., Perevertaylo T.G., Barkalova A.M., Genetic features and depositional environment of the Upper Pokur Formation in the southeast of the Pur-Taz interstream area (In Russ.), Akademicheskiy zhurnal Zapadnoy Sibiri, 2015, V. 11, no. 1(56), pp. 91–95.

8. Berbenev M.O., Osobennosti stroeniya i uglevodorodnaya produktivnost' otlozheniy pokurskoy svity na Russko-Chasel'skom megavale (Zapadnaya Sibir') (Structural features and hydrocarbon productivity of deposits of the Pokur formation at the Russo-Chaselsky megaval (Western Siberia)), In: Osadochnye basseyny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoy istorii (Sedimentary basins: sediment and post-sediment processes in geological history), 2013, V. I, pp. 85–89.

9. Zunde D.A., Popov I.P., Some methodology applied for construction of sequence-stratigraphic model of Pokur suite deposits (In Russ.), Neftepromyslovoe delo, 2015, no. 5, pp. 54–59.

This paper describes the facies modeling results of the PK1 formation on the Novo-Chaselskoye and the Zapadno-Chaselskoye fields located in the north of Western Siberia. The target object (PK1 formation) is characterized by extremely high lateral and vertical heterogeneity, unstable properties and lithological variability. All these structural features of the object are due to its polygenic composition. According to regional data, the accumulation of the PK1 formation occurred within the coastal accumulative plain, periodically flooded by the sea. Four sediment parasequences were defined in the PK1 formation based on facial core analysis, log data interpretation and seismic: continental sediments (PK14), transition zone sediments (PK13, PK12) and coastal marine sediments (PK11). 2D facies maps were constructed for each parasequence. Relations between permeability and porosity were defined for each facies group, forecast maps of reservoir prospective zones were constructed. It was defined that sand sediments of river channels (PK14), tidal channels (PK13, PK12) and prefrontal beach areas (PK11) have the best reservoir properties. At the bottom of the PK1 formation there are river channel and tidal channel sediments which have the highest permeability. This factor can be one of the reasons of the early water breakthrough during the production drilling in the superimposed channel zones. Final results of this work let us determine the optimal wells positions to achieve planned production levels and reduce risks of the early water breakthrough.

References

1. Muromtsev V.S., Elektrometricheskaya geologiya peschanykh tel – litologicheskikh lovushek nefti i gaza (Electrometric geology of sand bodies - lithological traps of oil and gas), Leningrad: Nedra Publ., 1984, 260 p.

2. Zhemchugova V.A., Prakticheskoe primenenie rezervuarnoy sedimentologii pri modelirovanii uglevodorodnykh sistem (The practical application of reservoir sedimentology in the modeling of hydrocarbon systems), Moscow: Publ. of Gubkin University, 2014, 344 p.

3. Alekseev V.P., Litologo-fatsial'nyy analiz (Lithofacial analysis), Ekaterinburg: Publ. of USMA, 2002, 147 p.

4. Zhemchugova V.A., Berbenev M.O., Naumchev Yu.V., New seismic technologies for better field exploration (Case study of upper cretaceous reservoirs in West Siberia) (In Russ.), Tekhnologii seysmorazvedki, 2015, no. 3, pp. 80–88.

5. Ol'neva, T.V. Zhukovskaya E.A., Seismic facies analysis range of possibilities for the study of paleo fluvial systems (In Russ.), Geofizika, 2016, no. 2, pp. 2–9.

6. Kontorovich A.E., Ershov S.V., Kazanenkov V.A. et al., Cretaceous paleogeography of the West Siberian sedimentary basin (In Russ.), Geologiya i geofizika, 2014, V. 55, no. 5–6, pp. 745–776.

7. Nedolivko N.M., Perevertaylo T.G., Barkalova A.M., Genetic features and depositional environment of the Upper Pokur Formation in the southeast of the Pur-Taz interstream area (In Russ.), Akademicheskiy zhurnal Zapadnoy Sibiri, 2015, V. 11, no. 1(56), pp. 91–95.

8. Berbenev M.O., Osobennosti stroeniya i uglevodorodnaya produktivnost' otlozheniy pokurskoy svity na Russko-Chasel'skom megavale (Zapadnaya Sibir') (Structural features and hydrocarbon productivity of deposits of the Pokur formation at the Russo-Chaselsky megaval (Western Siberia)), In: Osadochnye basseyny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoy istorii (Sedimentary basins: sediment and post-sediment processes in geological history), 2013, V. I, pp. 85–89.

9. Zunde D.A., Popov I.P., Some methodology applied for construction of sequence-stratigraphic model of Pokur suite deposits (In Russ.), Neftepromyslovoe delo, 2015, no. 5, pp. 54–59.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

27.07.2020
24.07.2020
22.07.2020