Test and application of electrical submersible pump units at White Tiger field

UDK: 622.276.53.054.23:621.67-83
DOI: 10.24887/0028-2448-2019-10-82-86
Key words: electrical submersible pump (ESP) unit, artificial lift, watercut, time between failures, well production, gas saturated liquid, pilot test
Authors: A.N. Ivanov (Vietsovpetro JV, the Socialist Republic Vietnam, Vung Tau), V.A. Bondarenko (Vietsovpetro JV, the Socialist Republic Vietnam, Vung Tau), M.M. Veliev (Vietsovpetro JV, the Socialist Republic Vietnam, Vung Tau), E.V. Kudin (Vietsovpetro JV, the Socialist Republic Vietnam, Vung Tau), E.N. Grishchenko (Vietsovpetro JV, the Socialist Republic Vietnam, Vung Tau)

Optimization of artificial oil lifting is the main objective to efficiently develop White Tiger field. Complex geotechnical conditions of the White Tiger zones development require pilot testing of various artificial lift methods in order to justify their effective application areas, as well as the analysis of the downhole equipment and selection of its best configuration, before the technical and process decisions are made.

Wide application of downhole centrifugal pumps with electric drive is caused by many factors. Having high amount of fluid withdrawal, the electrical submersible pump units are more economically efficient and less time-consuming during maintenance, comparing to compressor production or lifting by other types of pumps. The units’ power consumption under the high drainage is relatively low as well. ESPs require less space for surface equipment comparing to hydraulic pumps, which is crucial for the offshore fixed platform.

Gaslift is the main artificial lifting method at White Tiger field. However, delay in construction of gaslift cycle led to pilot tests of hydraulic pumps in 1988 and electric submersible pumps in 1991, in order to identify their application range on “White Tiger” field. Objective of testing and implementing the ESPs was to determine their application area during gas-saturated oil production from deep wells, with fluid temperature of 110–130 °С.

The article covers the history of production using electrical submersible pumps at White Tiger field and insufficient reliability of REDA pump units, operated in Lower Miocene wells.

References

1. Printsipial'naya tekhnologicheskaya skhema sbora, podgotovki i vneshnego transporta do KPN nefti i gaza severnogo i yuzhnogo svodov mestorozhdeniya “Belyy Tigr” (The basic technological scheme of collection, preparation and external transport to the CIT of oil and gas of the northern and southern arches of the White Tiger field), Moscow: Publ. of VNIPImorneftegaz, 1989, 144 p.

2. Bondarenko V.A., Ivanov A.N., Kudin E.V., Veliev M.M., Experience of testing the hydraulic piston pumps in White Tiger wells (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 3, pp. 92–95.

3. Bogdanov A.A., ESP and the effectiveness of their use for oil production (In Russ.), Neftepromyslovoe delo, 1992, no. 12, pp. 1–10.

4. Sal'manov R.G., Application of gas separator to ESP (In Russ.), Neftepromyslovoe delo, 1983, no. 5, pp. 8–9.

Optimization of artificial oil lifting is the main objective to efficiently develop White Tiger field. Complex geotechnical conditions of the White Tiger zones development require pilot testing of various artificial lift methods in order to justify their effective application areas, as well as the analysis of the downhole equipment and selection of its best configuration, before the technical and process decisions are made.

Wide application of downhole centrifugal pumps with electric drive is caused by many factors. Having high amount of fluid withdrawal, the electrical submersible pump units are more economically efficient and less time-consuming during maintenance, comparing to compressor production or lifting by other types of pumps. The units’ power consumption under the high drainage is relatively low as well. ESPs require less space for surface equipment comparing to hydraulic pumps, which is crucial for the offshore fixed platform.

Gaslift is the main artificial lifting method at White Tiger field. However, delay in construction of gaslift cycle led to pilot tests of hydraulic pumps in 1988 and electric submersible pumps in 1991, in order to identify their application range on “White Tiger” field. Objective of testing and implementing the ESPs was to determine their application area during gas-saturated oil production from deep wells, with fluid temperature of 110–130 °С.

The article covers the history of production using electrical submersible pumps at White Tiger field and insufficient reliability of REDA pump units, operated in Lower Miocene wells.

References

1. Printsipial'naya tekhnologicheskaya skhema sbora, podgotovki i vneshnego transporta do KPN nefti i gaza severnogo i yuzhnogo svodov mestorozhdeniya “Belyy Tigr” (The basic technological scheme of collection, preparation and external transport to the CIT of oil and gas of the northern and southern arches of the White Tiger field), Moscow: Publ. of VNIPImorneftegaz, 1989, 144 p.

2. Bondarenko V.A., Ivanov A.N., Kudin E.V., Veliev M.M., Experience of testing the hydraulic piston pumps in White Tiger wells (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 3, pp. 92–95.

3. Bogdanov A.A., ESP and the effectiveness of their use for oil production (In Russ.), Neftepromyslovoe delo, 1992, no. 12, pp. 1–10.

4. Sal'manov R.G., Application of gas separator to ESP (In Russ.), Neftepromyslovoe delo, 1983, no. 5, pp. 8–9.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

27.07.2020
24.07.2020
22.07.2020