Complex well test study to evaluate relative permeability functions to oil and water and displacement efficiency in conditions of abnormally low reservoir injectivity (part 2)

UDK: 622.276.031.011.433
DOI: 10.24887/0028-2448-2017-10-90-93
Key words: well testing, pulse neutron logging, displacement efficiency, relative permeability, salinity, two-phase flow, inverse problem
Authors: E.S. Zakirov, I.M. Indrupskiy, I.V. Vasiliev, D.P. Anikeev, T.N. Tsagan-Mandzhiev (Oil and Gas Research Institute of RAS, RF, Moscow), A.E. Rodionov (NIS Gazprom neft, Serbia, Novi Sad), D.S. Lachugin (SamaraNIPIneft, RF, Samara), V.S. Afanasiev, S.V. Afanasiev, A.A. Antonovich (GIFTS LLC, RF, Moscow)

The paper presents methodology and implementation results for a complex well test survey to evaluate displacement efficiency and relative permeability in-situ. Test procedure includes several “injection-production” cycles with brines of different salinity. Dynamic well data are supplemented by periodical water saturation measurements by pulse neutron logging methods and analyses of produced water composition.

The principles of well test design are discussed. Technical solutions are validated for controllable brine injection in conditions of low well injectivity. A complex interpretation procedure is developed for the set of measured logging, geochemical and dynamic flow data. Numerical multiphase flow simulations and optimal control (adjoint) methods are used for solution of the inverse problem to evaluate reservoir properties and relative permeability.

The test survey was implemented on an oil well in conditions of arctic climate and full autonomy. The obtained experience and results made it possible to evaluate in-situ displacement efficiency and relative permeability dynamics, as well as to tryout and improve the methodology of the well test. Unconventional effects in two-phase reservoir flow processes were revealed.

References

1. Zakirov E.S., Indrupskiy I.M., Vasil'ev I.V. et al., Complex well test study to evaluate relative permeability functions to oil and water and displacement efficiency in conditions of abnormally low reservoir injectivity. Part 1 (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 9, pp. 56–60.

2. Zakirov E.S., Trekhmernye mnogofaznye zadachi prognozirovaniya, analiza I regulirovaniya razrabotki mestorozhdeniy nefti i gaza (Three-dimensional multiphase problems of predict, analyze and control of oil and gas field development), Moscow: Graal’ Publ., 2001, 303 p.

3. Zakirov S.N., Indrupskiy I.M., Zakirov E.S. et al., In-situ determination of displacement efficiency and oil and water relative permeability curves through integrated well test study at exploration-to-pilot stage of the oilfield development project (In Russ.), SPE 181967 RU, 2016.

4. Amyx J.W., Bass D.M., Whiting R.L., Petroleum reservoir engineering, McGraw-Hill Book Company, 1960.

The paper presents methodology and implementation results for a complex well test survey to evaluate displacement efficiency and relative permeability in-situ. Test procedure includes several “injection-production” cycles with brines of different salinity. Dynamic well data are supplemented by periodical water saturation measurements by pulse neutron logging methods and analyses of produced water composition.

The principles of well test design are discussed. Technical solutions are validated for controllable brine injection in conditions of low well injectivity. A complex interpretation procedure is developed for the set of measured logging, geochemical and dynamic flow data. Numerical multiphase flow simulations and optimal control (adjoint) methods are used for solution of the inverse problem to evaluate reservoir properties and relative permeability.

The test survey was implemented on an oil well in conditions of arctic climate and full autonomy. The obtained experience and results made it possible to evaluate in-situ displacement efficiency and relative permeability dynamics, as well as to tryout and improve the methodology of the well test. Unconventional effects in two-phase reservoir flow processes were revealed.

References

1. Zakirov E.S., Indrupskiy I.M., Vasil'ev I.V. et al., Complex well test study to evaluate relative permeability functions to oil and water and displacement efficiency in conditions of abnormally low reservoir injectivity. Part 1 (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 9, pp. 56–60.

2. Zakirov E.S., Trekhmernye mnogofaznye zadachi prognozirovaniya, analiza I regulirovaniya razrabotki mestorozhdeniy nefti i gaza (Three-dimensional multiphase problems of predict, analyze and control of oil and gas field development), Moscow: Graal’ Publ., 2001, 303 p.

3. Zakirov S.N., Indrupskiy I.M., Zakirov E.S. et al., In-situ determination of displacement efficiency and oil and water relative permeability curves through integrated well test study at exploration-to-pilot stage of the oilfield development project (In Russ.), SPE 181967 RU, 2016.

4. Amyx J.W., Bass D.M., Whiting R.L., Petroleum reservoir engineering, McGraw-Hill Book Company, 1960.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

16.06.2021
15.06.2021
15.06.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина