The research of experimental downhole motor for well drilling using PDC type drill bits

UDK: 622.24.05
DOI: 10.24887/0028-2448-2017-10-70-74
Key words: downhole hydraulic motor, drilling, well, oil, gas
Authors: Yu.A. Sazonov, M.A. Mokhov, M.A. Frankov, D.Yu. Ivanov (Gubkin Russian State University of Oil and Gas (National Research University), RF, Moscow)

Rotation speed frequency range between 200 and 450 min-1 is of particular interest when drilling oil and gas wells with PDC bits. In such cases screw down-hole motors are widely applied, but they have functional disadvantage dealing with orbital trajectory of the motor. And such a trajectory results in crossover vibrations of down-hole motor and drilling bit. Vibrations, at the same time, reduce lifetime of the down-hole motor and affect economical aspects of the drilling. That is why it is important to develop the new down-hole motor working without any vibrations of the rotor.

The analysis of academic and technical papers showed absence of the simple and effective solution to rotor and down-hole motor vibrations. For that reason it is viable to expand the research scope and study other down-hole motors designs. Current study based on the concept that every screw surface might be replaced with the set of flat and cylindrical surfaces. Experimental studies confirmed that new hydraulic machines with the unique functions might be developed based on this concept. Screw surfaces were excluded from the design and flat and cylindrical surfaces were used instead.

Study results might be applied for the purpose of deviated and horizontal oil and gas wells drilling. Using simpler and more technological geometrical shape allows some parts of the hydraulic machine to be made of hard and ultra-hard materials, which brings new opportunities for practical application of such hydraulic machines when drilling wells at huge pressure differences.

References

1. Baldenko D.F., Korotaev Yu.A., The current status and Russian PDM perspectives of development (In Russ.), Burenie i neft', 2012, no. 3, URL: http://burneft.ru/archive/issues/2012-03/1.

2. Sazonov Iu.A., Mokhov M.A., Demidova A.A., Development of small hydraulic downhole motors for well drilling applications, American Journal of Applied Sciences 2016, 13 (10), pp. 1053.1059, DOI: 10.3844/ajassp.2016.1053.1059, http://thescipub.com/PDF/ajassp.2016.1053.1059.pdf.

3. Pittard G., Leitko C., Mallard R., Directional drilling motors evolve for demanding downhole environments, Upstream Pumping, 2015, May/June, URL: http://www.upstreampumping.com/article/drilling/2015/directional-drilling-motors

4. Ranjbar Kh., Sababi M., Failure assessment of the hard chrome coated rotors in the downhole drilling motors, Engineering Failure Analysis, 2012, V. 20, pp. 147–155, URL: http://rms.scu.ac.ir/Files/Articles/Journals/Abstract/ self%202012.pdf20121911115609.pdf

5. US patent no. 62411494, Non-elastomeric stator and downhole drilling motors incorporating same, Inventors: Pafitis D.G., Koval V.E., URL: http://www.freepatentsonline.com/6241494.pdf

6. Derkach N.D., Krutik E.N., Korotaev Yu.A., Gear reduction turbodrills improve drilling results, SPE 49258-MS, 1998.

7. Beaton T., Seale R., Beaird J., Development of a geared turbodrilling system and identifying applications, Paper PETSOC-2004-207.

8. Jones S., Feddema C., Sugiura J., A gear-reduced drilling turbine provides game changing results: An alternative to downhole positive displacement motor, SPE 178851-MS, 2016.

9. US patent no. 7172039, Down-hole vane motor, Inventors: Teale D.W., Marshall G., URL: http://www.freepatentsonline.com/7172039.pdf

10. US patent no. 5174737, Fluid compressor with spiral blade, Inventors: Sakata Hirotsugu, ItamiTsugio, Okuda Masayuki, Hirayama Takuya, Oikawa Satoru.

11. US patent no. 6074184, Pump utilizing helical seal, Inventor: Imai Atsushi, URL: http://www.freepatentsonline.com/6074184.pdf

12. Sazonov Yu.A., Mokhov M.A., Frankov M.A., Development of compact hydraulic positive displacement motor featuring no rotor vibrations in well drilling, Indian Journal of Science and Technology, 2016, V.9(42), DOI: 10.17485/ijst/2016/v9i42/104220, URL: http://www.indjst.org/index.php/indjst/article/view/104220/74841.

13. Utility patent 165039 RF, Vintovaya mashina (Screw-rotor machine), Inventors: Sazonov Yu.A., Mokhov M.A., Rybanov I.N., Frankov M.A.

14. Judd R., Diamond bearings support mud motor reliability, Upstream Pumping, 2015, July/August, URL: http://www.upstreampumping.com/article/ drilling/2015/diamond-bearings-support-mud-motor-reliability.

Rotation speed frequency range between 200 and 450 min-1 is of particular interest when drilling oil and gas wells with PDC bits. In such cases screw down-hole motors are widely applied, but they have functional disadvantage dealing with orbital trajectory of the motor. And such a trajectory results in crossover vibrations of down-hole motor and drilling bit. Vibrations, at the same time, reduce lifetime of the down-hole motor and affect economical aspects of the drilling. That is why it is important to develop the new down-hole motor working without any vibrations of the rotor.

The analysis of academic and technical papers showed absence of the simple and effective solution to rotor and down-hole motor vibrations. For that reason it is viable to expand the research scope and study other down-hole motors designs. Current study based on the concept that every screw surface might be replaced with the set of flat and cylindrical surfaces. Experimental studies confirmed that new hydraulic machines with the unique functions might be developed based on this concept. Screw surfaces were excluded from the design and flat and cylindrical surfaces were used instead.

Study results might be applied for the purpose of deviated and horizontal oil and gas wells drilling. Using simpler and more technological geometrical shape allows some parts of the hydraulic machine to be made of hard and ultra-hard materials, which brings new opportunities for practical application of such hydraulic machines when drilling wells at huge pressure differences.

References

1. Baldenko D.F., Korotaev Yu.A., The current status and Russian PDM perspectives of development (In Russ.), Burenie i neft', 2012, no. 3, URL: http://burneft.ru/archive/issues/2012-03/1.

2. Sazonov Iu.A., Mokhov M.A., Demidova A.A., Development of small hydraulic downhole motors for well drilling applications, American Journal of Applied Sciences 2016, 13 (10), pp. 1053.1059, DOI: 10.3844/ajassp.2016.1053.1059, http://thescipub.com/PDF/ajassp.2016.1053.1059.pdf.

3. Pittard G., Leitko C., Mallard R., Directional drilling motors evolve for demanding downhole environments, Upstream Pumping, 2015, May/June, URL: http://www.upstreampumping.com/article/drilling/2015/directional-drilling-motors

4. Ranjbar Kh., Sababi M., Failure assessment of the hard chrome coated rotors in the downhole drilling motors, Engineering Failure Analysis, 2012, V. 20, pp. 147–155, URL: http://rms.scu.ac.ir/Files/Articles/Journals/Abstract/ self%202012.pdf20121911115609.pdf

5. US patent no. 62411494, Non-elastomeric stator and downhole drilling motors incorporating same, Inventors: Pafitis D.G., Koval V.E., URL: http://www.freepatentsonline.com/6241494.pdf

6. Derkach N.D., Krutik E.N., Korotaev Yu.A., Gear reduction turbodrills improve drilling results, SPE 49258-MS, 1998.

7. Beaton T., Seale R., Beaird J., Development of a geared turbodrilling system and identifying applications, Paper PETSOC-2004-207.

8. Jones S., Feddema C., Sugiura J., A gear-reduced drilling turbine provides game changing results: An alternative to downhole positive displacement motor, SPE 178851-MS, 2016.

9. US patent no. 7172039, Down-hole vane motor, Inventors: Teale D.W., Marshall G., URL: http://www.freepatentsonline.com/7172039.pdf

10. US patent no. 5174737, Fluid compressor with spiral blade, Inventors: Sakata Hirotsugu, ItamiTsugio, Okuda Masayuki, Hirayama Takuya, Oikawa Satoru.

11. US patent no. 6074184, Pump utilizing helical seal, Inventor: Imai Atsushi, URL: http://www.freepatentsonline.com/6074184.pdf

12. Sazonov Yu.A., Mokhov M.A., Frankov M.A., Development of compact hydraulic positive displacement motor featuring no rotor vibrations in well drilling, Indian Journal of Science and Technology, 2016, V.9(42), DOI: 10.17485/ijst/2016/v9i42/104220, URL: http://www.indjst.org/index.php/indjst/article/view/104220/74841.

13. Utility patent 165039 RF, Vintovaya mashina (Screw-rotor machine), Inventors: Sazonov Yu.A., Mokhov M.A., Rybanov I.N., Frankov M.A.

14. Judd R., Diamond bearings support mud motor reliability, Upstream Pumping, 2015, July/August, URL: http://www.upstreampumping.com/article/ drilling/2015/diamond-bearings-support-mud-motor-reliability.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

16.06.2021
15.06.2021
15.06.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина