Using the chromatographic analysis for comparison of oil compositions and separation of production of wells, exploiting multilayer objects

UDK: 622.276.1/.4
DOI: 10.24887/0028-2448-2017-10-28-32
Key words: geochemical methods, chromatographic method, oil correlations, typification of oils, oil fingerprinting, separation of production wells, R. Trebs oil field, A. Titov oil field, Sorovskoye oil field
Authors: E.V. Russkih, K.Yu. Murinov (BashNIPIneft LLC, RF, Ufa)

The paper presents the chromatographic analysis used for correlation of oils. The method was developed and implemented on the basis of the known geochemical methods: the Erdman-Morris method and oil fingerprinting method. The first method gave the idea of using the relationship of hydrocarbons concentrations of gasoline fractions of oil, similar by chemical structure and boiling temperatures. The second method showed the opportunity to calculate any relations of any components or component pairs well-separated on the chromatogram and the method of graphical representation of results. The results of the chromatographic analysis are represented as star diagrams. The calculated values of ratios of the components or components pairs in oil samples are plotted on the axis.

The chromatographic method allowed typing of oils of complex structure oil fields – R. Trebs and A. Titov oil fields. Oil samples from the main object of R. Trebs oil field (ovinparm horizon – D1op) were identical. With the exceptions of two wells are probably on isolated areas of the field. The D1op horizon of A. Titov oil field is divided into two blocks. These blocks are geographically located in different parts of the field. The similarities and differences between these oil fields observed in chromatographic method are consistent with the results of physico-chemical and PVT properties.

By chromatographic method were also made the calculations for the allocation of production to individual zones in two-layer wells of Sorovskoye oil field. For oil wells, working on an individual layer, the ratios of the components or components pairs were determined. Using these values as markers there was made the calculation of the contribution of each layer in oil production for wells operating on two layers. The results are of good reproducibility for the selected at different times oils from the same well.

The proposed chromatographic method of oil correlations proved to rapid and informative method for establishing genetic relationship of oils, belonging oil to a single reservoir or common source of migration. The method can be applied to any oil fields provided marked differences in the component composition of the gasoline fractions of oils end allowed sampling separately from each layer (the presence of one-layer wells for each object of oil production).

References

1. Dakhnova M.V., Application of geochemical investigations for exploration, prospecting and development of hydrocacbons fields (In Russ.), Geologiya nefti i gaza = The journal Oil and Gas Geology, 2007, no. 2, pp. 82–89.

2. Halpern H.I., Development and applications of light-hydrocarbon-based star diagrams, AAPG Bulletin, 1995, V .79(6), pp. 801–815.

3. Kaufman R.L., Ahmed A.S., Hempkins W.B., A new technique for the analysis of commingled oils and its application to production allocation calculations, Proceedings of 16th Annual Indonesian Petro. Assoc., 1987, Paper IPA 87-23/21, pp. 247–268.

4. Hunt J., Petroleum geochemistry and geology, W.H.Freeman and Company, New York,1995, 743 p.

5. Novichkova E.V., Korrelyatsiya obraztsov nefti mestorozhdeniya im. R. Trebsa po detal'nomu analizu benzinovykh fraktsiy (po metodu Erdmana i Morrisa) (Correlation of oil samples of the R. Trebs field for a detailed analysis of gasoline fractions (according to the Erdman and Morris's method)), Proceedings of scientific and technical conference of young scientists of BashNIPIneft' LLC, Ufa: Publ. of BashNIPIneft', 2013, pp. 9–10.

6. Soboleva E.V., Guseva A.N., Khimiya goryuchikh iskopaemykh (Chemistry of fossil fuels), Publ. of MSU, 2010, 312 p.

The paper presents the chromatographic analysis used for correlation of oils. The method was developed and implemented on the basis of the known geochemical methods: the Erdman-Morris method and oil fingerprinting method. The first method gave the idea of using the relationship of hydrocarbons concentrations of gasoline fractions of oil, similar by chemical structure and boiling temperatures. The second method showed the opportunity to calculate any relations of any components or component pairs well-separated on the chromatogram and the method of graphical representation of results. The results of the chromatographic analysis are represented as star diagrams. The calculated values of ratios of the components or components pairs in oil samples are plotted on the axis.

The chromatographic method allowed typing of oils of complex structure oil fields – R. Trebs and A. Titov oil fields. Oil samples from the main object of R. Trebs oil field (ovinparm horizon – D1op) were identical. With the exceptions of two wells are probably on isolated areas of the field. The D1op horizon of A. Titov oil field is divided into two blocks. These blocks are geographically located in different parts of the field. The similarities and differences between these oil fields observed in chromatographic method are consistent with the results of physico-chemical and PVT properties.

By chromatographic method were also made the calculations for the allocation of production to individual zones in two-layer wells of Sorovskoye oil field. For oil wells, working on an individual layer, the ratios of the components or components pairs were determined. Using these values as markers there was made the calculation of the contribution of each layer in oil production for wells operating on two layers. The results are of good reproducibility for the selected at different times oils from the same well.

The proposed chromatographic method of oil correlations proved to rapid and informative method for establishing genetic relationship of oils, belonging oil to a single reservoir or common source of migration. The method can be applied to any oil fields provided marked differences in the component composition of the gasoline fractions of oils end allowed sampling separately from each layer (the presence of one-layer wells for each object of oil production).

References

1. Dakhnova M.V., Application of geochemical investigations for exploration, prospecting and development of hydrocacbons fields (In Russ.), Geologiya nefti i gaza = The journal Oil and Gas Geology, 2007, no. 2, pp. 82–89.

2. Halpern H.I., Development and applications of light-hydrocarbon-based star diagrams, AAPG Bulletin, 1995, V .79(6), pp. 801–815.

3. Kaufman R.L., Ahmed A.S., Hempkins W.B., A new technique for the analysis of commingled oils and its application to production allocation calculations, Proceedings of 16th Annual Indonesian Petro. Assoc., 1987, Paper IPA 87-23/21, pp. 247–268.

4. Hunt J., Petroleum geochemistry and geology, W.H.Freeman and Company, New York,1995, 743 p.

5. Novichkova E.V., Korrelyatsiya obraztsov nefti mestorozhdeniya im. R. Trebsa po detal'nomu analizu benzinovykh fraktsiy (po metodu Erdmana i Morrisa) (Correlation of oil samples of the R. Trebs field for a detailed analysis of gasoline fractions (according to the Erdman and Morris's method)), Proceedings of scientific and technical conference of young scientists of BashNIPIneft' LLC, Ufa: Publ. of BashNIPIneft', 2013, pp. 9–10.

6. Soboleva E.V., Guseva A.N., Khimiya goryuchikh iskopaemykh (Chemistry of fossil fuels), Publ. of MSU, 2010, 312 p.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

16.06.2021
15.06.2021
15.06.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина