Intensification of thermal steam methods of production of heavy oil using a catalyst based on cobalt

UDK: 622.276.65
Key words: aquathermolysis, heavy crude oil, in situ conversion, catalyst precursor, transition metal
Authors: S.A. Sitnov, M.S. Petrovnina, D.A. Feoktistov, D.R. Isakov, D.K. Nourgaliev (Kazan (Volga Region) Federal University, RF, Kazan), M.I. Amerkhanov (Tatneft PJSC, RF, Almetyevsk)
The article aims to study the possibility of improving the efficiency of thermal steam methods of production of high-viscosity oil based on the results of laboratory modeling of catalytic and non-catalytic aquathermolysis. Study was conducted on the sample of high-viscosity oil of Ashalchinskoye field in conditions close to reservoir under thermal steam treatment: an initial pressure of 3 bar, temperature 150 and 180°C for 6 hours while adding the precursor (jointly and individually) of the catalyst and proton donor in the amount of 1% by weight of oil. Study presents the results of determining the viscosity-temperature characteristics and group composition by the SARA method of original and transformed oils. It is found that the oil samples after non-catalytic thermal steam exposure, both at 150°C and 180°C, are characterized by higher values of viscosity in comparison with other research subjects. It is connected, apparently, with the formation of high molecular weight alkanes as a result of the recombination of the destroyed fragments of high molecular weight components. In addition, the result of thermal steam exposure is a more dense structure due to the lack of protons available to bond with the formed radicals to prevent the process of increasing the molecular weight of the oil system. It is shown that the use of the catalyst, the active form of which is formed in situ, in combination with a protons donor allows to reduce the content of asphalt-resinous compounds. This provides an irreversible decrease in viscosity of produced oil, facilitates further transportation and processing.
Reverences
1. Yakutseni V.P., Petrova Yu.E., Sukhanov A.A., Dynamics of share of the relative
content of stranded oil in the general reserve (In Russ.), Neftegazovaya
geologiya. Teoriya i praktika, 2007, no. 2, pp. 1–11.
2. Maksutov R., Orlov G., Osipov A., The development of high-viscosity oil reserves
in Russia (In Russ.), Tekhnologii TEK, 2005, no. 6, pp. 36–40.
3. Maity S.K., Ancheyta J., Marroqun G., Catalytic aquathermolysis used for
viscosity reduction of heavy crude oils: A Review, Energy & Fuels, 2010, V. 24,
pp. 2809–2816.
4. Kayukova G.P., Gubaidullin A.T., Petrov S.M. et al., The changes of asphaltenes
structural-phase characteristics in the process of conversion of
heavy oil in the hydrothermal catalytic system, Energy& Fuels, 2016, V. 30,
pp. 773–783.
5. Vakhin A.V., Morozov V.P., Sitnov S.A. et al., Application of thermal investigation
methods in developing heavy-oil production technologies, Chemistry
and Technology of Fuels and Oils, 2015, V. 50(6), pp. 569–578.
6. Feoktistov D.A., Sitnov S.A., Vahin A.V. et al., The description of heavy crude
oils and the products of their catalytic conversion according to SARA-analysis
data, International Journal of Applied Engineering Research, 2015, V. 10,
pp. 45007–45014.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .