Changes in mineral skeleton of oil reservoir in course of water flooding

Authors: G.A. Krinari (Kazan (Volga Region) Federal University, RF, Kazan), Yu. Sh. Rakhmatullina (Institute of Ecology and Subsurface Resources Management Problems, Academy of Science of the Republic of Tatarstan, RF, Kazan)
Key words: oil bearing rocks, micas, mixed layer illite-smectite.
To optimize oil production technologies it must be taking into account the extent and causes of secondary changes in mineral skeleton of rocks as a result of technological or natural water flooding. It is shown that in the course of technological water flooding of the area occupied by water and oil do not have clear boundaries, and the decay of particles secondary micas on individual nanoblocks with large shared surface and high surface charge begins in predominantly of saturated oil reservoir area. The filtration of water and oil in natural porous medium arise percolation effects, that is confirmed experimentally. The results obtained should be considered to optimize oil production technologies, increase production and reduce the water cut.

References

1. Muslimov R.Kh., Sovremennye metody upravleniya razrabotkoy neftyanykh

mestorozhdeniy s primeneniem zavodneniya (Modern methods of managing

the development of oil fields using the water flooding), Kazan': Publ. of

KSU, 2003, 596 p.

2. Drits V.A., Kossovskaya A.G., Glinistye mineraly: slyudy, khlority (Clay minerals:

mica, chlorite), Moscow: Nauka Publ., 1991, 175 p.

3. Sakhibgareev R.S., Vtorichnye izmeneniya kollektorov v protsesse

formirovaniya i razrusheniya neftyanykh zalezhey (Secondary changes of collectors

in the formation and destruction of oil deposits), Leningrad: Nedra

Publ., 1989, 260 p.

4. Krinari G.A., Giniyatullin K.G., Shinkarev A.A., Zapiski Vserossiyskogo mineralogicheskogo

obshchestva - Proceedings of the Russian Mineralogical Society,

2005, V. CXXXIV, no. 1, pp. 17-32.

5. Shaydullin I.A., Krinari G.A., Uchenye zapiski Kazanskogo universiteta. Seriya

Estestvennye nauki, 2011, V. 153, no. 3, pp. 3-11.

6. Krinari G.A., Khramchenkov M.G., Doklady Akademii nauk, 2011, V. 436,

no. 5, pp. 1-7.

7. Krinari G.A., Khramchenkov M.G, Mukhametshin R.Z., Gidrogeologiya,

geoekologiya, inzhenernaya geologiya - Environmental Geoscience, 2001,

no. 4, pp. 15-22.

8. Drits V.A., Tchoubar C., X-ray diffraction by disordered lamellar structures,

Berlin: Springer-Verlag, 1990, 371 p.

9. Sakharov B.A., Lindgreen H., Salyn A.L., Drits V.A., Determination of Illite-

Smectite structures using multispecimen x-ray diffraction profile fitting, Clays

& Clay Minerals, 1999, V. 47, no. 5, pp. 555-566.

10. Drits V.A., Sakharov B.A., Rentgenostrukturnyy analiz smeshanosloynykh

mineralov (X-ray structure analysis of mixed-minerals), Moscow: Nauka Publ.,

1976, 256 p.

11. Solotchina E.P., Strukturnyy tipomorfizm glinistykh mineralov osadochnykh

razrezov i kor vyvetrivaniya (Structural typomorphism of clay minerals in sedimentary

sections and weathering crusts), Novosibirsk: Geo Publ., 2009, 234 p.

12. Rakhmatulina Yu.Sh., Krinari G.A., Georesursy - Georesources, 2012, no.

2(44), pp. 35-39.

13. Giniyatullin K.G., Shinkarev A.A. Jr., Shinkarev A.A. et al., Pochvovedenie -

Eurasian Soil Science, 2012, no. 11, pp. 1211-1225.

14. Krinari G.A., Khramchenkov M.G., Doklady Akademii nauk, 2008, V. 423,

no. 4, pp. 524-529.

15. Hunt A., Ewing R., Percolation theory for flow in porous media, Lection

Notes Physics 771, Berlin – Heidelberg: Springer, 2009, 320 р.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .