Method for porosity and saturation determination of shale rocks on crushed core

UDK: 552.08
DOI: 10.24887/0028-2448-2023-1-6-12
Key words: shale rocks, fraction size, extraction, density, porosity, saturation, gas injection porosimetry method, modified fluid saturation method
Authors: A.M. Gorshkov (Geologika JSC, RF, Novosibirsk), R.M. Saitov (Geologika JSC, RF, Novosibirsk; Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the RAS, RF, Novosibirsk)

At present, method, developed at Gas Research Institute (GRI method), has an international status for assessing petrophysical properties of shale rocks. A comprehensive study of shale rocks based on this method revealed significant shortcomings, which in some cases become critical. The article proposes method for determining gas-saturated and open porosity, as well as gas, water and oil saturation of shale rocks on crushed samples. The method is adapted for main shale formations in Russia, as it is based on the investigation of more than 2700 core samples from 33 wells. Gas-saturated porosity of fresh samples (the core is in state of natural saturation) and open porosity of dry samples (the core is after extraction) are calculated based on bulk and grain densities. Grain density was determined by means of the gas injection porosimetry method. Two methods are proposed for determining bulk density of crushed fresh samples. There are the gas injection porosimetry method and the modified fluid saturation method. Authors of the article substantiate obligatoriness to determine bulk density of dry samples and suggest a method. Gas saturation of shale rocks was calculated based on gas-saturated and open porosity. Water saturation of shale rocks was determined by means of the direct method in the Zaks apparatus. Oil saturation of shale rocks was calculated by means of the material balance method of phases in void space. Approbation of offered method is carried out and main results of researches are given. Developed method can be used for routine research with high discreteness (1 sample for every 30-50 cm of core sampled). Applying of different fraction sizes for measuring bulk and grain densities, as well as water saturation, makes it possible to determine petrophysical properties independently of each other. All this allows to reduce time capacity of core investigation. The results obtained by means of the method can be used to identify promising intervals of reservoir, build correlation between well logging data and petrophysical core properties, calculate reserves, and also plan exploration work.

References

1. Sigal R.F., Mercury capillary pressure measurements on Barnett core, SPE Reservoir Evaluation & Engineering, 2013, V. 16, no. 4, pp. 432–442, DOI:10.2118/167607-PA

2. Yao Y., Liu D., Che Y. et al., Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR), Fuel, 2010, V. 89, no. 7, pp. 1371–1380, DOI:10.1016/j.fuel.2009.11.005

3. Glotov A.V., Mikhaylov N.N., Molokov P.B. et al., Saturation of rocks of the Bazhenov formation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2021, no. 3, pp. 28–33, DOI: 10.24887/0028-2448-2021-3-28-33

4. Kuila U., McCarty D.K., Derkowski A. et al., Total porosity measurement in gas shales by the water immersion porosimetry (WIP) method, Fuel, 2014, V. 117, pp. 1115–1129, DOI:10.1016/j.fuel.2013.09.073

5. Kazak E.S., Kazak A.V., Sorokoumova Ya.V., Alekseev A.D., The efficient method of water content determination in low-permeable rocks of Bazhenov formation (Western Siberia) (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 7, pp. 73–78, https://doi.org/10.24887/0028-2448-2019-7-73-78

6. Glotov A.V., Skripkin A.G., Gorshkov A.M., Laboratory evaluations of bazhenov suite sediments porosity and saturation by different methods (In Russ.), Karotazhnik, 2019, no. 6(3), pp. 23–40.

7. Luffel D.L., Guidry F.K., Curtis J.B., Development of laboratory and petrophysical techniques for evaluating shale reservoirs: Final report. GRI-95/0496. Gas Research Institute, Des Plaines, Illinois, 1995, 304 p.

8. Sun J., Dong X., Wang J. et al., Measurement of total porosity for gas shales by gas injection porosimetry (GIP) method, Fuel, 2016, V. 186, no. 15, pp. 694–707, DOI:10.1016/j.fuel.2016.09.010

9. Fomin A.N., Katagenez organicheskogo veshchestva i neftegazonosnost’ mezozoyskikh i paleozoyskikh otlozheniy Zapadno-Sibirskogo megabasseyna (Catagenesis of organic matter and oil and gas bearing of Mesozoic and Paleozoic deposits of the West Siberian megabasin), Novosibirsk: Publ. of IPGG SB RAS, 2011, 331 p.

10. Kontorovich A.E., Ponomareva E.V., Burshteyn L.M. et al., Distribution of organic matter in rocks of the Bazhenov horizon (West Siberia) (In Russ.), Geologiya i geofizika = Russian Geology and Geophysics, 2018, V. 59, no. 3, pp. 357–371.

11. Gorshkov A.M., Khomyakov I.S., Mazurova A.S., Some aspects to develop method for determining the open porosity of ultralow-permeability rocks on crushed core, IOP Conf. Ser.: Earth and Environmental Science, 2020, V. 459, no. 2, pp. 1–7, DOI:10.1088/1755-1315/459/2/022068

12. Gorshkov A.M., Method for determiting porosity in ultra-low permeability rock of Bazhenov formation on crushed core (In Russ.), Uspekhi sovremennogo estestvoznaniya, 2017, no. 12, pp. 129–133.

13. Glotov A.V., Skripkin A.G., Molokov P.B., Mikhaylov N.N., Residual water saturation of oil source rocks of the Bazhenov formation (In Russ.), Neftegaz.RU, 2022, no. 3, pp. 40–46.

14. Behar F., Beaumont V., De B., Penteado H.L., Rock-Eval 6 technology: Performances and developments, Oil & Gas Science and Technology, 2001, V. 56, no. 2, pp. 111–134, DOI:10.2516/ogst:2001013

15. Bilibin S.I., Kalmykov G.A., Ganichev D.I., Balushkina N.S., Model of the petroliferous rocks of the Bazhen formation (In Russ.), Geofizika, 2015, no. 3, pp. 5–14.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .