Creation of domestic mechanical displacement meter provers

UDK: 622.692.4
DOI: 10.24887/0028-2448-2022-8-134-138
Key words: crude quality control system (CQCS), mechanical displacement meter prover (MDMP), calibrated section, acceleration section, flow transducer
Authors: I.V. Buyanov (The Pipeline Transport Institute LLC, RF, Moscow), O.V. Aralov (The Pipeline Transport Institute LLC, RF, Moscow), A.M. Korolenok (Gubkin University, RF, Moscow), E.I. Jordanskii (The Pipeline Transport Institute LLC, RF, Moscow), N.V. Berezhanskii (The Pipeline Transport Institute LLC, RF, Moscow)

At present, different types of flow transducers are used for volumetric flow metering of oil in the crude quality control system (CQCS). Calibration facilities are used as part of CQCS to calibrate and verify metrological characteristics of flow transducers. In recent years, mechanical displacement meter provers (MDMP), predominantly foreign-made, are being used most frequently at the facilities of domestic oil companies. As the analysis of the regulatory and technical framework has shown, the Russian Federation currently lacks uniform technical and metrological requirements for MDMP, as well as experience of in-house production.

The paper presents the results of comprehensive scientific studies aimed at substantiating the lengths of acceleration and calibration sections of MDMPs for the creation of domestic installations. To solve this task, experimental studies were performed at 10 operated MDMP. The experimental results were compared with the results of the calculation of lengths of the MDMP acceleration sections within the frames of six hypotheses. The development of hypotheses was carried out according to the analysis of the results of previously performed scientific studies and theoretical calculations. Based on the obtained data, the shortest length of the acceleration sections of MDMP ensuring metrological characteristics of the MDMP was substantiated with guaranteed stabilization of the ball piston velocity in MDMP to the beginning of the calibrated section; and the minimum lengths of calibrated sections for MDMP of different capacities were calculated as well. The obtained results are applied in mathematical modeling of MDMP in the ANSYS applied software as part of the CFD computational fluid dynamics and Mechanical Enterprise strength calculations packages as part of MDMP production.

References

1. Aralov O.V., Buyanov I.V., Lisin Yu.V. et al., Sovremennoe sostoyanie vedeniya uchetnykh operatsiy s neft'yu i nefteproduktami s primeneniem izmeritel'nykh sistem v Rossii (The current state of accounting operations with oil and oil products using measuring systems in Russia), Moscow: Nedra Publ., 2019, 246 p.

2. Chernenkov V.P., Ionov V.S., Issledovanie metrologicheskikh kharakteristik raskhodomernykh ustroystv pri pomoshchi poverochnoy ustanovki DVGTU-ESKO (Study of the metrological characteristics of flow meters using the DVGTU-ESKO calibration facility), Proceedings of Vologdinskie chteniya, 2008, no. 70, p. 93.

3. A Tukhvatullin A.R., Korneev R.A., Kolodnikov A.V. et al., Attestatsiya etalonov edinits massovogo i ob"emnogo raskhodov zhidkosti (In Russ.), Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, no. 18, pp. 245-247.

4. Isaev I.A., Khakimov D.R., Gorchev A.I., Ganiev R.I., Study of the metrological characteristics of an ultrasonic gas meter on reference flow meters (In Russ.), Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, no. 18, pp. 239-244

5. Kozlov V.K., Nemirov M.S., Lukmanov P.I., Measuring the amount of crude oil with a high water content (In Russ.), Izvestiya VUZov. Problemy energetiki, 2006, no. 9–10, pp. 94-99.

6. Goryunova S.M., Mukhametkhanova L.M., Petukhova L.V., Nikolaeva N.G., Problems of metrological support of the Russian oil complex (In Russ.), Vestnik Kazanskogo tekhnologicheskogo universiteta, 2011, no. 11, pp. 263-266.

7. Flegentov I.A., Zhevelev O.Yu., Mukhortov A.Yu., Four-way valves for pipe provers (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, , 2017, no. 7(6), pp. 98-103.

8. Kremlevskiy P.P., Raskhodomery i schetchiki kolichestva veshchestv (Flowmeters and substance counters), Part 2, St. Petersburg: Politekhnika Publ., 2002, 412 s.

9. Webster J.G., The measurement, instrumentation and sensors handbook, Boca Raton: CRC Press, 1999, 2588 p.

10. Instrument engineers’ handbook. Process measurement and analysis: edited by Liptak B.G., Boca Raton: CRC Press, 2003, V.1, 1860 p.

11. LaNasa P.J., Upp E.L., Fluid flow measurement. A practical guide to accurate flow measurement, Butterworth-Heinemann, 2014.

12. Baker R.C., Flow measurement handbook: Industrial designs, operating principles, performance, and applications, Cambridge University Press, 2016, 790 p.

13. Timofeev F.V., Kuznetsov A.A.,
Matematicheskaya model' laboratornogo kontrolya kachestva nefti i
nefteproduktov (Mathematical model of laboratory quality control of oil and oil
products), Proceedings of «Truboprovodnyy transport — 2017» (Pipeline transport
– 2017), Ufa, 2017, pp. 193–195.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .