Investigating the rate of corrosion-mechanical wear of steels for oilfield pipes using the modified ASTM G65 method

UDK: 622.276.8
DOI: 10.24887/0028-2448-2021-9-112-115
Key words: corrosion, corrosion factors, oil field pipelines, salinity, corrosion rate, corrosion-active components, formation water, hydrogen index, corrosion-mechanical wear, mass loss, wear
Authors: O.Yu. Elagina (Gubkin University, RF, Moscow), A.K. Prygaev (Gubkin University, RF, Moscow), K.V. Nakonechaya (Gubkin University, RF, Moscow)

The work is devoted to corrosion-mechanical testing of steels used for field pipelines operating under the conditions of the combined action of a corrosive environment and abrasive wear. The article presents the results of comparative tests of steels 20A and 09G2S, which revealed the reaction of the tested steels to a change in the hydrogen index pH during wear. During the tests, an adapted methodology according to ASTM G65 was used, which allows one to evaluate the complex effect of corrosion and mechanical factors. For a comparative assessment of the contribution of the corrosion factor to the fracture process, studies have been carried out on the development of corrosion processes on 20A and 09G2S steels in field media of different aggressiveness. Based on the data obtained during the study, equations were derived that characterize the general tendency for the corrosion rate to change depending on the value of pH of the production medium. According to the research of surface topography and profilograms of the tested samples, the contribution of the contact area to the wear rate was estimated. According to the rate of corrosion-mechanical wear, the destruction rates of the pipe surface were determined by the means of action of the medium with different abrasive contents. Based on the analysis of the data obtained, equations are derived to determine the contribution of the corrosion-mechanical factor. Having analyzed the results of corrosion and corrosion-mechanical tests of selected steels, the possibility of predicting their service life by separately studying the contribution of various factors to the fracture process is revealed. It is especially worth noting that the data obtained play an important role in risk assessment in the design of oil field pipelines.

References

1. Amezhnov A.V., Features and mechanisms of corrosion destruction of steels in various operating conditionsof oilfield pipelines (In Russ.), Problemy chernoy metallurgii i materialovedeniya, 2019, no. 2, pp. 34–42.

2. Zemenkova M.Yu., Puzina T.S., Maslakov S.V. et al., Settlement model and algorithm of definition of a residual resource of the pipe duct in the conditions of periodic changes of tension and corrosion (In Russ.), Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal), 2014, no. S4, pp. 174–183.

3. Prozhega M.V., Tatus' N.A., Smirnov N.N. et al., Erosion-corrosion of materials. Review (In Russ.), Trenie i smazka v mashinakh i mekhanizmakh, 2013, no. 10, pp. 3–8.

4. Silin Ya.V., Sistemnyy analiz nadezhnosti neftepromyslovykh truboprovodov Zapadnoy Sibiri metodami fiziki otkazov i teorii katastrof (Systematic analysis of the reliability of oilfield pipelines in Western Siberia using the methods of physics of failures and theory of catastrophes): thesis of candidate of technical science, Surgut, 2011.

5. Sarazha S., Levchenko A., Darenskikh A. et al., Investigation of corrosion destruction of the surfaces of oil pipelines after long-term operation (In Russ.), TekhNadzor, 2015, no. 10 (107), pp. 196–197.

6. Sorokin G.M., Efremov A.P., Saakiyan L.S., Korrozionno-mekhanicheskoe iznashivanie staley i splavov (Corrosion-mechanical wear of steels and alloys), Moscow: Neft' i gaz Publ., 2002, 424 p.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .