Evaluation of wide well spacing pilot project in D1 horizon of Bavlinskoye field 60 years later

UDK: 622.276.344
DOI: 10.24887/0028-2448-2021-7-18-22
Key words: wide well spacing, efficiency, full-scale experiment, pattern arrangement, oil recovery, geological model
Authors: R.S. Khisamov (Tatneft PJSC, RF, Almetyevsk), I.N. Khakimzyanov (TatNIPIneft, RF, Bugulma; Oktyabrsky Branch of Ufa State Petroleum Technical University, RF, Oktyabrsky), A.V. Lifantiev (TatNIPIneft, RF, Bugulma), R.I. Sheshdirov (TatNIPIneft, RF, Bugulma), V.Sh. Mukhametshin (Oktyabrsky Branch of Ufa State Petroleum Technical University, RF, Oktyabrsky)

Pilot project implemented in the Bavlinsky deposit of Pashian horizon identified some features of oil-drainage line movement, oil-water contact raising, showed no severe breakthrough and water fingering subject to proper reservoir management, as well as demonstrated mechanism of non-uniform movement and constriction of oil-drainage boundaries. The experiment showed that although considerable amount of oil is displaced from the water-oil zone into the oil zone during peripheral waterflooding, oil losses due to undeveloped water-oil zone or due to wide well spacing are quite high. Therefore, the water-oil zone should be developed with the same well pattern as the oil zone. It should be noted that the maximum efficiency is achieved by well drilling in this zone from the very start of field production. According to various studies, oil losses in the Bavlinskoye oil field due to wide well spacing make 4.7-12.7%, which is much higher than it was projected (0.25-1.5%). The results of geologic model calculations showed that oil losses due to wide well spacing made 7.4-7.7%. To assess oil losses during wide well spacing experiment and its effect on oil recovery from D1 horizon, multiversion numerical simulation is required with changing well operation conditions, time and sequence of well shutting-in and putting on production, which will enable detecting oil flow paths towards producing wells with due regard for specific geological structure. A 60-years’ experience in D1 horizon development shows that adjustment of well interventions included in the previously approved technical project documentation provided oil recovery increase.

References

1. Muslimov R.Kh., The outstanding role of the Bavlinskoye oil field in the formation of high technologies for the development of productive strata (In Russ.), Georesursy, 2006, no. 3 (20), pp. 3–7.

2. Khisamov R.S., Ganiev G.G., Khannanov R.G. et al., Scientific and practical significance of the discovery and development of the Bavlinsky oil field (In Russ.), Georesursy, 2006, no. 3 (20), pp. 8–10.

3. Khammadeev F.M, Sultanov S.A., Poluyan I.G., Eksperimental'naya razrabotka Bavlinskogo mestorozhdeniya (Pilot production of Bavlinskoye field), Kazan': Tatknigoizdat Publ., 1975, 111 p.

4. Dorokhov O.I., Poluyan I.G., Sultanov S.A., Large-scale experiment in Bavlinskoye field (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1959, no. 3, pp. 41–46.

5. Dorokhov O.I., Metodika izucheniya nefteotdachi v promyslovykh usloviyakh na Bavlinskom neftyanom mestorozhdenii (Field study of oil recovery in Bavlinsky field), Scientific and technical collection of oil production / VNII, 1961, V. 13, pp. 56–60.

6. Dorokhov O.I., Sultanov S.A., Poluyan I.G., Promyshlennyy eksperiment na Bavlinskom mestorozhdenii po izucheniyu vliyaniya plotnosti setki na protsess ekspluatatsii i nefteotdachu (Industrial experiment at the Bavlinskoye field to study the effect of grid density on the process of operation and oil recovery), Collected papers “Opyt razrabotki neftyanykh i gazovykh mestorozhdeniy” (Experience in the development of oil and gas fields), Proceedings of All-Union meeting, Kiev, 1961, Moscow: Gostoptekhizdat Publ., 1963, pp. 35–41.

7. Muslimov R.Kh., Nikolaev V.A., Sultanov S.A., Poluyan I.G., Preliminary results of Bavlinsky pilot project (In Russ.), Neftyanoe khozyaystvo = Oil Industry, Neftyanoe khozyaystvo, 1981, no. 7, pp. 30–38.

Pilot project implemented in the Bavlinsky deposit of Pashian horizon identified some features of oil-drainage line movement, oil-water contact raising, showed no severe breakthrough and water fingering subject to proper reservoir management, as well as demonstrated mechanism of non-uniform movement and constriction of oil-drainage boundaries. The experiment showed that although considerable amount of oil is displaced from the water-oil zone into the oil zone during peripheral waterflooding, oil losses due to undeveloped water-oil zone or due to wide well spacing are quite high. Therefore, the water-oil zone should be developed with the same well pattern as the oil zone. It should be noted that the maximum efficiency is achieved by well drilling in this zone from the very start of field production. According to various studies, oil losses in the Bavlinskoye oil field due to wide well spacing make 4.7-12.7%, which is much higher than it was projected (0.25-1.5%). The results of geologic model calculations showed that oil losses due to wide well spacing made 7.4-7.7%. To assess oil losses during wide well spacing experiment and its effect on oil recovery from D1 horizon, multiversion numerical simulation is required with changing well operation conditions, time and sequence of well shutting-in and putting on production, which will enable detecting oil flow paths towards producing wells with due regard for specific geological structure. A 60-years’ experience in D1 horizon development shows that adjustment of well interventions included in the previously approved technical project documentation provided oil recovery increase.

References

1. Muslimov R.Kh., The outstanding role of the Bavlinskoye oil field in the formation of high technologies for the development of productive strata (In Russ.), Georesursy, 2006, no. 3 (20), pp. 3–7.

2. Khisamov R.S., Ganiev G.G., Khannanov R.G. et al., Scientific and practical significance of the discovery and development of the Bavlinsky oil field (In Russ.), Georesursy, 2006, no. 3 (20), pp. 8–10.

3. Khammadeev F.M, Sultanov S.A., Poluyan I.G., Eksperimental'naya razrabotka Bavlinskogo mestorozhdeniya (Pilot production of Bavlinskoye field), Kazan': Tatknigoizdat Publ., 1975, 111 p.

4. Dorokhov O.I., Poluyan I.G., Sultanov S.A., Large-scale experiment in Bavlinskoye field (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1959, no. 3, pp. 41–46.

5. Dorokhov O.I., Metodika izucheniya nefteotdachi v promyslovykh usloviyakh na Bavlinskom neftyanom mestorozhdenii (Field study of oil recovery in Bavlinsky field), Scientific and technical collection of oil production / VNII, 1961, V. 13, pp. 56–60.

6. Dorokhov O.I., Sultanov S.A., Poluyan I.G., Promyshlennyy eksperiment na Bavlinskom mestorozhdenii po izucheniyu vliyaniya plotnosti setki na protsess ekspluatatsii i nefteotdachu (Industrial experiment at the Bavlinskoye field to study the effect of grid density on the process of operation and oil recovery), Collected papers “Opyt razrabotki neftyanykh i gazovykh mestorozhdeniy” (Experience in the development of oil and gas fields), Proceedings of All-Union meeting, Kiev, 1961, Moscow: Gostoptekhizdat Publ., 1963, pp. 35–41.

7. Muslimov R.Kh., Nikolaev V.A., Sultanov S.A., Poluyan I.G., Preliminary results of Bavlinsky pilot project (In Russ.), Neftyanoe khozyaystvo = Oil Industry, Neftyanoe khozyaystvo, 1981, no. 7, pp. 30–38.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .