Target programs formation methodology on prevention of major incidents at production

UDK: 502.36:622.276
DOI: 10.24887/0028-2448-2021-2-102-105
Key words: process, leak, safety, barrier, integrity, management, process safety event (PSE)
Authors: I.S. Sivokon (Rosneft Oil Company, RF, Moscow), V.A. Kulagin (Rosneft Oil Company, RF, Moscow), M.V. Anfimov (Rosneft Oil Company, RF, Moscow)

One of the most important priorities and results of industrial safety is reduction of the number, and in marginal state total absence, of major incidents at production with grave negative effects first of all on human life and health, environment and, what is important, on business. For determination of priority measures with the purpose of industrial incidents prevention, the classification and analysis means have been applied for industrial incidents related to integrity damage of protective shell, so called Process Safety Events (PSE) and method of risk assessment and evaluation Bow Tie Diagram. As the baselines for analysis and research we used the results of PSE-1 and PSE-2 level incidents investigation which had taken place at the Rosneft’s hazardous production facility in 2019 and in 1st half year of 2020. The research was carried out in 2 stages. First one was an attribution of direct and system causes of PSE-1 and PSE-2 to preventive and responsive barriers (risk management measures) and determination of deficiencies barriers or omissions in which most frequently lead to production major incidents. Second stage was seasonal analysis of the most major incidents (PSE-1) and revealing the connection between the total number of incidents and the number of the most major incidents, classified as PSE-1.

Results of the performed researches and calculations let us make several conclusions, having practical value. Target achievement of the major incidents reduction and diminishment of their consequences gravity is provided with the measures different from those directed to reduction of the total failure rate and increase of operational availability. Application of the barrier approach to the major incidents causes analysis, allowed us to determine priority measures, execution of which intentionally influences the frequency and gravity of production major incidents. It was established absence of any significant connection between the number of major incidents (PSE-1 and

PSE-2) and their total quantity (PSE).

The proposed assessment and evaluation methodology has potential for development in terms of development and application of more detailed “bow tie” diagrams applicable to the most frequently repeated types of incidents, as well as applicable to other types of incidents such as motor-vehicle, works at heights, electric safety etc.

References

1. Kulagin V.A., Sivokon' I.S., Pronina E.S. et al., Experience of introducing PSER indicators as a tool to manage process safety (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 11, pp. 68–71.

2. ANSI/API RP 754. Process safety performance indicators for the refining and petrochemical industries, URL: https://www.api.org/oil-and-natural-gas/health-and-safety/refinery-and-plant-safety/process-safety/p...

3. OGP Report no. 456 "Proizvodstvennaya bezopasnost' – Prakticheskie rekomendatsii po osnovnym pokazatelyam effektivnosti" (Occupational Safety - Practical Guidelines for Key Performance Indicators), URL: https://www.api.org/oil-andnatural-gas / health-and-safety / refinery-and-plant-safety / process-safety / process-safety-standards / rp-754

4. Bow ties risk management: A concept book for process safety, by CCPS, John Wiley & Sons, ISBN: 978-1-119-49039-5, 2018, 224 p.

5. Lutchman Ch., Evans D., Ghanem W., Maharaj R., Fundamentals of an operationally excellent management system, USA, Boca Roton: CRC Press, 2015, 456 p.

One of the most important priorities and results of industrial safety is reduction of the number, and in marginal state total absence, of major incidents at production with grave negative effects first of all on human life and health, environment and, what is important, on business. For determination of priority measures with the purpose of industrial incidents prevention, the classification and analysis means have been applied for industrial incidents related to integrity damage of protective shell, so called Process Safety Events (PSE) and method of risk assessment and evaluation Bow Tie Diagram. As the baselines for analysis and research we used the results of PSE-1 and PSE-2 level incidents investigation which had taken place at the Rosneft’s hazardous production facility in 2019 and in 1st half year of 2020. The research was carried out in 2 stages. First one was an attribution of direct and system causes of PSE-1 and PSE-2 to preventive and responsive barriers (risk management measures) and determination of deficiencies barriers or omissions in which most frequently lead to production major incidents. Second stage was seasonal analysis of the most major incidents (PSE-1) and revealing the connection between the total number of incidents and the number of the most major incidents, classified as PSE-1.

Results of the performed researches and calculations let us make several conclusions, having practical value. Target achievement of the major incidents reduction and diminishment of their consequences gravity is provided with the measures different from those directed to reduction of the total failure rate and increase of operational availability. Application of the barrier approach to the major incidents causes analysis, allowed us to determine priority measures, execution of which intentionally influences the frequency and gravity of production major incidents. It was established absence of any significant connection between the number of major incidents (PSE-1 and

PSE-2) and their total quantity (PSE).

The proposed assessment and evaluation methodology has potential for development in terms of development and application of more detailed “bow tie” diagrams applicable to the most frequently repeated types of incidents, as well as applicable to other types of incidents such as motor-vehicle, works at heights, electric safety etc.

References

1. Kulagin V.A., Sivokon' I.S., Pronina E.S. et al., Experience of introducing PSER indicators as a tool to manage process safety (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 11, pp. 68–71.

2. ANSI/API RP 754. Process safety performance indicators for the refining and petrochemical industries, URL: https://www.api.org/oil-and-natural-gas/health-and-safety/refinery-and-plant-safety/process-safety/p...

3. OGP Report no. 456 "Proizvodstvennaya bezopasnost' – Prakticheskie rekomendatsii po osnovnym pokazatelyam effektivnosti" (Occupational Safety - Practical Guidelines for Key Performance Indicators), URL: https://www.api.org/oil-andnatural-gas / health-and-safety / refinery-and-plant-safety / process-safety / process-safety-standards / rp-754

4. Bow ties risk management: A concept book for process safety, by CCPS, John Wiley & Sons, ISBN: 978-1-119-49039-5, 2018, 224 p.

5. Lutchman Ch., Evans D., Ghanem W., Maharaj R., Fundamentals of an operationally excellent management system, USA, Boca Roton: CRC Press, 2015, 456 p.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

11.10.2021
07.10.2021
29.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина