Experience in use of monocarboxylic acid in oil inflow intensification

UDK: 622.276.63
DOI: 10.24887/0028-2448-2018-2-68-71
Key words: intensification, monocarboxylic acid, acid neutralization, corrosion, one-stage treatment, two-stage treatment, carbonate reservoir, fluid inflow profile, efficiency, fluid level
Authors: Sh.A. Gafarov (Ufa State Petroleum Technical University, RF, Ufa), A.V. Lysenkov (Ufa State Petroleum Technical University, RF, Ufa), A.Sh. Gafarov (Gazprom VNIIGAZ LLC, RF, Moscow), A.V. Akimkin (Bashneft PJSC, RF, Ufa)

In the article experience of use of monocarboxylic acid in oil well treatment are reviewed. Noted range of advantages of monocarboxylic acid compared to usually used hydrochloric acid solutions. Main advantages are: slower rate of interaction with carbonate matrix; lower corrosion rate; better iron and aluminum ions stability features. Monocarboxylic acid can be used as additives to hydrochloric acid solutions at oil well treatments (acetic acid, formic acid etc.).

To optimize cost of treatments we tested out hydrocarbon liquid-phase oxidation products (hereafter referred to as ‘mono-mix’) - mixture of monocarboxylic acids and organic solvents. Production of mono-mix is well spread at gasoline plants or in situ at oil fields treating facilities. Mono-mix manufactured from co-produced gas or gas and condensate from gas fields. To define reservoir condition limitation for mono-mix well treatment series of laboratory tests was conducted. It is shown that mono-mix reaction with carbonate is exothermic. Neutralization rate of mono-mix as well as it`s solutions with HCl considerably slower compared to pure HCl. Mono-mix solutions (fresh or spent) bear low coefficient of surface tension at mono-mix – oil border. Mono-mix shows quite high stabilizing and bactericidal features. Fresh and spent mono-mix solutions significantly depress the swelling ability of formation clays as well as filtered from drilling mud, destroy and disperse clay structure supporting the takeaway from the reservoir, possessing anti-corrosion features.

Using theoretical and experimental data one-fluid and two-fluids solutions for field testing proposed. 11 oil well exploiting Kashirskian-Podolskian horizon of Arlanskoye oilfield were treated with mono-mix solution. Before pilot test those wells were treated with HCl numerous times as well as with oil-acid emulsion.

Treatment with mono-mix solutions complete in pilot test display much better result compared to previous standard HCl-solution treatments and can be recommended for common use.


1. Loginov B.G., Malyshev L.G., Garifullin Sh.S., Rukovodstvo po kislotnym obrabotkam skvazhin (Guide to acid treatment of wells), Moscow: Nedra Publ., 1966, 219 p.

2. Gafarov Sh.A., Zhdanov A.G., Primenenie rastvorov monokarbonovykh kislot dlya intensifikatsii dobychi nefti (The use of solutions of monocarboxylic acids for the intensification of oil production), Moscow: Khimiya Publ., 2004, 192 p.

3. Glushchenko V.N., Silin M.A., Neftepromyslovaya khimiya (Oilfield chemistry), Part 4. Kislotnaya obrabotka skvazhin (Acid treatment): edited by Mishchenko I.T., Moscow: Interkontakt Nauka Publ., 2010, 703 p.

4. Blyum R.G., Men'shikov A.I., Vliyanie dobavok nizkomolekulyarnykh organicheskikh kislot na solyanokislotnye obrabotki skvazhiny (The effect of low molecular weight organic acid additives on the hydrochloric acid treatments of the well), Collected papers “Sbor, transport i podgotovka nefti” (Collection, transportation and oil preparation), Proceedings of All-Union Scientific Conference, Perm', 1967, pp. 148–154.

5. Nikitina L.A., Martos V.N.,  Novoe v voprosakh vozdeystviya na prizaboynuyu zonu skvazhin (New in the issues of impact on the bottomhole well zone),  Overview “Neftepromyslovoe delo” (Oilfield business), Moscow: Publ. of VNIIOENT, 1971, 69 p.

6. Arushanov M.P., Issledovanie vozmozhnosti primeneniya reagentov, soderzhashchikh nizkomolekulyarnye organicheskie kisloty, dlya povysheniya nefteotdachi karbonatnykh kollektorov (Investigation of the possibility of using reagents containing low-molecular organic acids to enhance the recovery of carbonate reservoirs): thesis of candidate of technical science, Moscow, 1976.

7. Zagoruyko A.A, Petsukha R.A., Gorabchev B.I., The use of acidic effluent from the production of synthetic fatty acids for EOR (In Russ.), Neftyanoe khozyaystvo, 1976, no. 6, pp. 36–39.

8. Gafarov Sh.A., Use of the product of liquid-phase oxidation of hydrocarbon feedstock for stabilization and suppression of swelling of clays (In Russ.), Neftegazovoe delo, 2002, V. 1. 

To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .