О разработке скважинного термоэлектрического устройства для строительства и эксплуатации скважин в районах с многолетнемерзлыми породами

UDK: 622.276.057
DOI: 10.24887/0028-2448-2018-3-66-69
Ключевые слова: термоэлектрический эффект, эффект Пельтье, многолетнемерзлая порода, экспериментальное исследование, термозащитное оборудование, распределение температуры
Авт.: П.Л. Павлова (Сибирский федеральный университет), П.М. Кондрашов (Сибирский федеральный университет)

Climate warming, which has been going on the territory of Russia with the speed of two and a half times as much as global warming, has become the reason of permafrost melting, which takes more than half of the territory of the Russian Federation. According to IPCC’s estimates, the warming which has been since the middle of the 20th century is human induced with probability of 95%. That is why the construction and operation of oil wells may lead to acceleration of permafrost degradation process, which will cause numerous technogenic accidents. In this regard development of thermal protective equipment is a crucial task. The central focus of research and design work is development of passive thermal protective equipment like thermal insulated direction, oil well tubing etc., and also development of active thermal protective equipment – heat stabilizers with the use of coolants, for example, ammonia, Freon R22, but these devices have got some drawbacks. That is why in order to create effective and environmental friendly thermal protective equipment it is necessary to develop new technology, which would be able to control and react swiftly on natural and man-induced impact on permafrost.

In our opinion, downhole thermoelectric device can be used as such technology. It means thermal flow control in the system “well-permafrost” by regulating current rate and voltage in thermoelectric elements with optional use of thermal conductivity of different materials for improving effectiveness of their work. In this article the results of experimental investigation of temperature distribution along the plate surface from the action of thermoelectric element have been included, experimental data with theoretical values of Green functions and the suggested formula have been compared. The conclusion concerning the possibility of designing a downhole thermoelectric device for thermal flow control in the system “well-permafrost” has been drawn.


1. Vtoroy otsenochnyy doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiyskoy Federatsii. Obshchee rezyume (The 2nd assessment report of Roshydromet on climate change and its consequences on the territory of the Russian Federation. General summary), Moscow: Publ. of Rosgidromet, 2014, 60 p.

2. O sostoyanii i ispol'zovanii mineral'no-syr'evykh resursov Rossiyskoy Federatsii v 2013 godu. Gosudarstvennyy doklad (On the state and use of mineral resources in the Russian Federation in 2013. State report), Moscow: Publ. of Ministry of Natural Resources and Ecology of the Russian Federation, 2013, 387 p.

3. Eliseeva O.A., Luk'yanov A.S., On system estimation of economically acceptable resourses of Russian oil and gas provinces taking into account innovation technologies  (In Russ.), Georesursy. Geoenergetika. Geopolitika, 2014, no. 1, URL: http://oilgasjournal.ru/vol_9/eliseeva.pdf

4. Molchanov V.P., Akimov V.A., Sokolov Yu.I., Riski chrezvychaynoy situatsii v Arkticheskoy zone Rossiyskoy Federatsii (Risks of an emergency in the Arctic zone of the Russian Federation), Moscow: Publ. of FGBU VNII GOChS (FTs), 2011, 300 p.

5. Kontorovich A.E., Epov A.I., Burshteyn L.M. et al., Geology and hydrocarbon resources of the continental shelf in Russian Arctic seas and the prospects of their development (In Russ.), Geologiya i geofizika = Russian Geology and Geophysics, 2010, V. 51, no. 1, pp. 7–17

6. Polozkov A.V., Bliznyukov V.Yu. et al., Investigation of thermal regimes during testing, development of exploratory and production wells in permafrost (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2008, no. 7, pp. 15-21.

7. Bykov I.Yu., Marakasova I.S., Analysis of the factors of the preparative when choosing a thermal protection equipment (In Russ.), Stroitel'stvo neftyanykh i gazovykh skvazhin na sushe i na more, 2010, no. 8, pp. 9–13.

8. Bykov I.Yu., Bobyleva T.V., Termozashchita konstruktsiy skvazhin v merzlykh porodakh (Thermal protection of well structures in frozen rocks), Ukhta: Publ. of USTU, 2007, 131 p.

9. Pavlova P.L., Kolosov M.V., Kondrashov P.M., Zen'kov I.V., The development of a prototype device for thermal stabilization of permafrost (In Russ.), Neftegazovoe delo, 2014, no. 6, pp. 679–697.

10. Medvedskiy R.I., Stroitel'stvo i ekspluatatsiya skvazhin na neft' i gaz v vechnomerzlykh porodakh (Construction and operation of wells for oil and gas in permafrost), Moscow: Nedra Publ., 1987, 230 p.

11. Ioffe A.I., Stil'bans L.S., Iordanishvili E.K., Stavitskaya T.S., Termoelektricheskoe okhlazhdenie (Thermoelectric cooling), Publ. of AS of USSR, 1956, 113 p.

12. Patent no. 2500880 RF, MPK E21B36/00, Device for heat insulation of wells in permanently frozen ground, Inventors: Kolosov V.V., Birikh R.A., Pavlova P.L., Lunev A.S.

13. Isachenko V.P., Osipova V.A., Sukomel A.S., Teploperedacha (Heat transfer), Moscow: Energiya Publ., 1975, 488 p.

14. Aramanovich I.G., Levin V.I., Uravneniya matematicheskoy fiziki (Equations of mathematical physics), Moscow: Nauka Publ., 1969, 287 p.

15. Pavlova P.L., Kondrashov P.M., Zen'kov I.V., Results of temperature change study in a wellhead oil and gas pipe with the use of a thermoelectric cooling device (In Russ.), Vestnik IrGTU, 2016, no. 4, pp. 46–53

Купить полный текст статьи (формат - PDF) могут только авторизованные посетители сайта.