Evaluating inhibition protection of pipes with defects of internal coating

UDK: 620.193:621.643.23
DOI: 10.24887/0028-2448-2023-6-97-100
Key words: localized corrosion, pipes with internal coating, inhibitor protection
Authors: I.V. Kostitsyna (RN-BashNIPIneft LLC, RF, Ufa), D.A. Strekalovskaya (Peter the Great Saint-Petersburg Polytechnic University, RF, Saint-Petersburg), V.V. Lunev (Bashneft-Dobycha LLC, RF, Ufa), M.V. Chernyak (RN-BashNIPIneft LLC, RF, Ufa)

The use of internal epoxy coatings is an effective measure of corrosion protection of pipelines. However, in case of degradation of the coating properties after a certain time or in case of a construction or manufacturing defect of the coatings the operation of pipelines with an internal anti-corrosion coating can cause a significant problem for the operating organization. The service life of pipes with a violation of the integrity of the internal epoxy coating can be from 1 to 3 years. In this article the possibility of pipes inhibitor protection with defects of the internal polymer coating was investigated. The dependences of the coating size defect on the metal corrosion rate are considered. The dosages of the corrosion inhibitor at which there is a significant decrease in the local corrosion rate of samples with coating defects are estimated. It was found that the corrosion rate depends on the size of the coating defect. It is shown that the smaller the size of the coating defect, the higher the corrosion rate due to the localization of corrosion processes in a small area and an increase in the corrosion current density. As a result of the experiments it was found that the efficiency of inhibition of samples with a violation of the integrity of the internal coating in comparison with samples of base metal is significantly lower. A decrease in the corrosion rate of samples with defects occurs at higher dosages of the corrosion inhibitor. An economic calculation confirmed the possibility of pipe inhibition with a violation of the integrity of the internal coating before reconstruction and replacement. An analogy is made between pipes with a violation of the integrity of the internal coating with steel pipelines that fail due to localized corrosion. It has been suggested that in order to decrease local corrosion processes on the inner surface of pipelines, increased dosages of corrosion inhibitors should be used to achieve a corrosion rate not higher than the standard value.

References

1. GOST 9.506-87. Unified system of corrosion and ageing protection. Corrosion inhibitors of metals in water-petroleum media. Methods of protective ability evaluation, Moscow: Publ. of Gostandart, 1987, 16 p.

2. ASTM G59-97(2014). Standard test method for conducting potentiodynamic polarization resistance measurements.

3. ASTM G102-89(2015). Standard practice for calculation of corrosion rates and related information from electrochemical measurements.

4. Halama M., Haluschak E., Hanzes P., Baranova G., The effect of defect size and soil aggressivity on corrosion of underground oil & gas pipelines, Corrosion in the Oil & Gas Industry, 2019, V. 121, no. 01006, DOI: 10.1051/e3sconf/201912101006

5. Adedeji K.B., Ponnle A.A., Abe B.T., Jimoh A.A., Effect of increasing energy demand on the corrosion rate of buried pipelines in the vicinity of high voltage overhead transmission lines, Proceedings of Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM), 2015, pp. 299–303, DOI: 10.1109/OPTIM.2015.7426749



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .