Based on structural and textural features of rocks of volcanogenic-sedimentary strata, their mineral composition, genesis and secondary transformations, 11 petrological types of rocks are identified in the article. Regularities of changes in their chemical, mineral composition, filtration-capacitive properties, mineral and bulk density, acoustic and electrical properties, natural radioactivity and nuclear-physical parameters depending on genesis and secondary transformations have been studied. The need to take into account the identified patterns in geological interpretation of results of well logging is shown. Porosity and permeability increase in sequence: lava of massive texture – lava with voids – volcanic-sedimentary – volcanoclastic rocks. The influence of secondary transformations can both improve and worsen the permeability and capacitance characteristics. The mineral composition of the studied deposits is represented by quartz, potassium feldspar, plagioclase, chlorite, illite, mixed-layer formations, calcite, siderite. The content of quartz, potassium feldspar in naturally reduced from acidic differences to ultramafic. With an increase in the content of dark-colored minerals, the content of chlorite and calcite increases. Secondary processes contribute to the reduction of feldspars as result of their destruction and replacement with post-magmatic minerals. Variations in mineral composition have a significant impact of the density, acoustic and nuclear-physical characteristics of the studied deposits. The electrical resistance of rocks (in addition to porosity and water saturation) depends on the structure of the void space and secondary transformations. Fracturing, clay minerals, zeolites, pyrite reduce electrical resistance. The reduced absorption capacity increases with an increase in clay content from volcanogenic to volcanogenic-sedimentary and sedimentary rocks. The total radioactivity and content of potassium, uranium, and thorium decrease in a series: acidic volcanogenic rocks – volcanogenic-sedimentary deposits – sedimentary deposits - mafic volcanogenic rocks. In acidic volcanogenic rocks radioactivity and potassium content increase in accordance with the change in the type of secondary processes from albitization, digestion carbonatization to chloritization, the development of mixed-layer formations, peletization-illitization and to microclinization. In the same direction, the ratios of thorium to potassium, uranium to potassium decrease.
References
1. Krylova O.V., Razrabotka metodiki opredeleniya litologicheskogo sostava i kollektorskikh svoystv vulkanogenno-osadochnykh porod po dannym promyslovoy geofiziki (na primere sredneeotsenovykh otlozheniy mestorozhdeniy Gruzii) (Development of a method for determining the lithological composition and reservoir properties of volcanic-sedimentary rocks based on production geophysics data (on the example of Middle Eocene deposits of Georgian fields)): thesis of candidat of geological and mineralogical science, Groznyy, 1983.
2. Sokolova T.F., Nekrasova T.V., Osobennosti izucheniya vulkanogenno-osadochnykh porod metodami GIS (na primere otlozheniy Zapadnoy Kamchatki) (Features of the study of volcanogenic-sedimentary rocks by well logging methods (on the example of Western Kamchatka deposits)), Proceedings of 10th EAGE science and applied research conference on oil and gas geological exploration and development “Geomodel 2008”, Moscow, 2008, pp. 716–719, DOI: https://doi.org/10.3997/2214-4609.201404426
3. Frolova Yu.V., Ladygin V.M., Rychagov S.N., Petrofizicheskie preobrazovaniya vulkanogennykh porod pod vozdeystviem gidrotermal'nykh protsessov (Petrophysical transformations of volcanogenic rocks under the influence of hydrothermal processes), Materialy IV All-Russian Symposium on Volcanology, Petropavlovsk-Kamchatskiy, 22–27 September 2009, Petropavlovsk-Kamchatskiy, 2009, pp. 821–824.
4. Enikeev B.N., Some petrophysical aspects of the interpretation of volcanic rocks and their weathering crusts, Proceedings of 7th EAGE Conference & Exhibition Understanding the Harmony of the Earthʼs Resources through Integration of Geosciences, Saint Petersburg, April 11–14, 2016, DOI: https://doi.org/10.3997/2214-4609.201600222
5. . Korovina T.A., Kropotova E.P., Romanov E.A., Shadrina S.V., Geologiya i neftenasyshchenie v porodakh triasa Rogozhnikovskogo LU. Regional'nye seysmologicheskie i metodicheskie predposylki uvelicheniya resursnoy bazy nefti, gaza i kondensata, povyshenie izvlekaemosti nefti v Zapadno-Sibirskoy neftegazonosnoy provintsii (Geology and oil saturation in the Triassic rocks of the Rogozhnikovsky license area. Regional seismological and methodological prerequisites for increasing the resource base of oil, gas and condensate, increasing oil recoverability in the West Siberian oil and gas province), Collected papers “Sostoyanie, tendentsii i problemy razvitiya neftegazovogo potentsiala Zapadnoy Sibiri” (The state, trends and problems of the development of oil and gas potential of Western Siberia), Proceedings of mezhdunarodnoy akademicheskoy konferentsii, Tyumen, 2006, pp. 138–142.
6. Kropotova E.P., Korovina T.A., Romanov E.A., Fedortsov I.V., Sostoyanie izuchennosti i sovremennye vzglyady na stroenie, sostav i perspektivy doyurskikh otlozheniy zapadnoy chasti Surgutskogo rayona (Rogozhnikovskiy litsenzionnyy uchastok) (The state of knowledge and modern views on the structure, composition and prospects of pre-Jurassic deposits of the western part of the Surgut region (Rogozhnikovsky license area)),Proceedings of IX scientific and practical conference “Puti realizatsii neftegazovogo potentsiala KhMAO” (Ways of realization of oil and gas potential of KhMAO), Khanty-Mansiysk, 2006, pp. 133–146.
7. Kropotova E.P., Korovina T.A., N Gil'manova.V., Shadrina S.V., Usloviya formirovaniya zalezhey uglevodorodov v doyurskikh otlozheniyakh na Rogozhnikovskom litsenzionnom uchastke (Conditions for the formation of hydrocarbon deposits in pre-Jurassic sediments at the Rogozhnikovsky license area), Proceedings of X scientific and practical conference “Puti realizatsii neftegazovogo potentsiala KhMAO” (Ways of realization of oil and gas potential of KhMAO), Khanty-Mansiysk 13–17 November 2007, Ekaterinburg: IzdatNaukaServis Publ., 2007, pp. 372–383.
8. Maleev E.F., Vulkanity (Volcanics), Moscow: Nedra Publ., 1980, 240 p.
9. Shadrina S.V., Kritskiy I.L., The formation of volcanogenic reservoir by hydrothermal fluid (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2012, no. 8, pp. 18–21.
10. Efimov V.A., The nuclear physics characteristic of volcanogenic rocks (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2006, no. 8, pp. 108–110.
11. Kondakov A.P., Efimov V.A., Dobryden' S.V., Reservoirs identifying in the volcanogenic-sedimentary rocks of the northeast edge of Krasnoleninskiy