The article proposes a set of stimulation methods for oil reservoirs of one of the field in Western Siberia, which has been in operation since 1982. The authors selected and analyzed such methods of improved oil recovery as hydraulic fracturing, horizontal wells drilling, and sidetracking. Based on the data obtained from the field, the results were analyzed. Total for the period from 2012 to 2016 years 26 hydraulic fracturing operations were performed at the field. The largest increments in oil production rates were obtained for wells with hydraulic fracturing performed in 2012 - on average 17.0 t/day, in 2016 - 23 t/day. The most effective for the period under consideration was hydraulic fracturing of the BS12 formation, where the maximum oil production rate was obtained. Cumulative production from 3 horizontal wells for 2009-2016 years amounts to 81 thousand tons or 1.1% of the accumulated production at the field for this period. The initial oil production rate of horizontal wells ranged from 10.9 to 82.4 t/day. Comparison of the performance indicators shows that the oil flow rates of horizontal wells exceed the flow rates of vertical wells by 2-3 times Water cut of production at horizontal wells in 2009-2010 years exceed the water cut of vertical wells. Total additional production from sidetracking for 2014-2016 years is 14.47 thousand tons. The share of additional oil production from sidetracking in the total volume of additional production from geological and technical measures for the period 2012-2016 years is 2.7%. A conclusion is given on the effectiveness of the application of methods for improved oil production for design periods. The analysis of the data obtained showed that drilling of horizontal wells has the greatest prospects, due to the ratio of the number of activities and the additional production obtained. Sidetrack drilling is also promising.
References
1. Malyshev A.G., Malyshev G.A., Zheludkov A.V., Osobennosti ekspluatatsii skvazhin posle GRP (Features of well operation after hydraulic fracturing), Moscow: Publ. of VNIIOENG, 2010, 156 p.
2. Ibatullin R.R., Experience in North America tight oil reserves development. Horizontal wells and multistage hydraulic fracturing (In Russ.), Georesursy, 2017, V. 19, no. 3, pp. 176-181, DOI:10.18599/grs.19.3.4
3. Salimov V.G., Ibragimov N.G., Nasybullin A.V., Salimov O.V., Gidravlicheskiy razryv karbonatnykh plastov (Hydraulic fracturing of carbonate formations), Moscow: Neftyanoe khozyaystvo Publ., 2013, 472 p.
4. Gudok I.O., Izuchenie fizicheskikh svoystv v poristykh sredakh (Study of physical properties in porous media), Moscow: Nedra Publ., 2010, 315 p.
5. Economides M., Oligney R., Valko P., Unified fracture design. Bridging the gap between theory and practice, Orsa Press, Alvin, Texas, 2002, 262 p.
6. Neskoromnykh V.V., Burenie naklonnykh, gorizontal’nykh i mnogozaboynykh skvazhin (Drilling of deviated, horizontal and multilateral wells), Krasnoyarsk: Siberian Federal University, 2016, 322 p.
7. Kiryushin A.Yu., Analysis of the efficiency of drilling sidetracks in the Muravlenkovskoye field (In Russ.), Akademicheskiy zhurnal Zapadnoy Sibiri, 2018, no. 6, pp. 128–130.