Field test of catalytic aquathermolysis technology at Strelovskoye oil field in the Samara region

UDK: 622.276.6
DOI: 10.24887/0028-2448-2022-12-118-121
Key words: steam injection, aquathermolysis, heavy oil, in situ conversion, catalyst, transition metals
Authors: S.Ya. Malaniy (LUKOIL-Engineering LLC, RF, Moscow), O.V. Slavkina (LUKOIL-Engineering LLC, RF, Moscow), A.A. Ryazanov (RITEK LLC, RF, Volgograd), N.Yu. Sennikov (MC RITEK-Samara-Nafta, RF, Samara), A.A. Akhmetov (MC RITEK-Samara-Nafta, RF, Samara), S.V. Tsvetkov (MC RITEK-Samara-Nafta, RF, Samara), I.I. Mukhamatdinov (Kazan (Volga Region) Federal University, RF, Kazan), A.V. Vakhin (Kazan (Volga Region) Federal University, RF, Kazan), A.A. Ivanova (Skolkovo Institute of Science and Technology, RF, Moscow)

A major problem in the modern oil and gas industry is to increase efficiency in the development of high-viscosity oil fields. Specifically, steam injection technology is most commonly used for the production of high viscosity oil. In previous research, it was shown that injection of catalysts for aquathermolysis of high viscosity oil can be used together with steam injection. These catalysts, together with steam injection, can reduce oil viscosity, increase the proportion of light fractions, and reduce the content of resins and asphaltenes.

In the current stage of work, problems related to researching the use of various starting reagents for catalyst production, selecting the optimal equipment for synthesizing a pilot batch, testing the technology under industrial conditions, and comparing the properties of the pilot sample with the laboratory sample were also established. The results of field tests on the creation and application of a new technology of catalytic aquathermolysis to improve the development efficiency of high-viscosity petroleum deposits using the Strelovskoye field as an example were presented. Steam injection technology is used at the Strelovskoye field. In addition, the main stages of the work were considered: from laboratory studies to determine the changes in the properties of the oil in the presence of catalytic aquathermolysis to the selection of optimal injection conditions and analysis of the results of field tests at the pilot site. The technology of thermal steam treatment of wells together with injection of a catalytic composition based on iron and nickel carboxylates in cyclic mode was developed. The company also produced 4.5 tons of the catalyst. The field tests showed that the average well flow rate increased compared to the previous steam treatment cycle without catalyst. Oil viscosity was also reduced by more than 4 times. In addition, the obtained results confirm the prospects of using the developed technology to improve the efficiency of heavy oil production. Currently, further scaling is planned at other wells of the Strelovskoye field.

Acknowledgment. This paper has been supported by the Kazan (Volga Region) Federal University Strategic Academic Leadership Program (PRIORITY-2030) and LUKOIL PJSC.

References

1. Maity S.K., Ancheyta J., Marroquín G., Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: a review, Energy & Fuels, 2010, V. 24, pp. 2809–2816, DOI:10.1021/ef100230k

2. Pevneva G.S., Voronetskaya N.G., Sviridenko N.N., Cracking of maltenes of naphthenic petroleum in the presence of WC/Ni–Cr, Pet. Chem., 2020, V. 60, pp. 373–379, DOI:10.1134/S0965544120030160

3. Vakhin A.V. , Sitnov S.A., Mukhamatdinov I.I. et al., Procedure of thermal catalyst effect for "RITEK" LLC hard-to-recover oil fields development in Samara region (In Russ.), Neft'. Gaz. Novatsii, 2019, V. 224, no. 7, pp. 75-78.

4. Vakhin A.V., Sitnov S.A., Mukhamatdinov I.I. et al., Perspectives in applying nano-dispersed catalysts at the basis of transition metals to enhance oil recovery at the stage of hard-to-recover oil fields commissioning at "RITEK" LLC (In Russ.), Neft'. Gaz. Novatsii, 2019, V. 224, no. 8, pp. 42–46.

5. Khaydarova A.R., Gogalyuk T.V., Mukhamatdinov I.I. et al., The role of magnetite in conversion of resins and asphaltenes during hydrothermal upgrading of heavy oil (In Russ.), Neft'. Gaz. Novatsii, 2020, V. 233, no. 4, pp. 78–82.

6. Mukhamatdinov I.I., Giniyatullina E.E., Mukhamatdinova R.E. et al., Effect of aqua thermolysis catalyst on in-situ transformation of high-viscous oil from Strelovskoye field in Samara region (In Russ.), Neft'. Gaz. Novatsii, 2021, no. 3, pp. 38–42.

7. Mukhamatdinov I.I., Giniyatullina E.E., Mukhamatdinova R.E. et al., Evaluation of the aquathermolysis catalysts effect on the composition and properties of high-viscosity oil from the Strelovskoe field, SOCAR Proceedings, 2021, Special Issue 2, pp. 90–96.

8. Vakhin A.V., Khelkhal M-A., Mukhamatdinov I.I. et al., Changes in heavy oil saturates and aromatics in the presence of microwave radiation and iron-based nanoparticles, Catalysts, 2022, V. 12, p. 514, DOI:10.3390/catal12050514

9. Mukhamatdinov I.I., Lapin A.V., Mukhamatdinova R.E. et al., Study of the hydrothermal-catalytic influence on the oil-bearing rocks of the Usinskoye oil field, Catalysts, 2022, V. 12 (10), p. 1268, DOI:10.3390/catal12101268

10. Fan H., Liu Y., Downhole catalyst upgrades heavy oil, Oil Gas J., 2002, V. 100, pp. 60–62.

11. Wei LI, Zhu J, Qi J., Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis, J. Fuel Chem Technol., 2007, V. 35, pp. 176–180, DOI:10.1016/S1872-5813(07)60016-4

12. Lin D., Zhu H., Wu Y. et al., Morphological insights into the catalytic aquathermolysis of crude oil with an easily prepared high-efficiency Fe3O4-containing catalyst, Fuel, 2019, V. 245, pp. 420–428, DOI:10.1016/j.fuel.2019.02.063



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .