The Russian Arctic Shelf is a zone of priority national interests, because significant hydrocarbon reserves are concentrated in this region. At present, there is a gradual change in the natural environment, which necessitates the study of spatio-temporal patterns of the systemic development of the geological environment. The paper presents the results of scientific processing of field data obtained in the western part of the Kara Sea. The bottom relief of the Kara Sea was formed due to the continuous, historically determined development of anthropogenic and natural (exogenous and endogenous) processes. In the Late Quaternary, the relief changed as a result of alternations of glacial and interglacial natural settings and accompanying fluctuations in the level of the World Ocean, which led to the formation of morphogenetic complexes of glacial, glacial-marine, marine, and subaerial origin on the structures of the pre-Quaternary basement. Based on the results of the work carried out using materials from field studies, a geomorphological map-scheme of the western part of the Kara Sea was constructed. A map legend has been developed and structural and morphological forms of relief, including large lineaments, have been identified. The zones of ablation and accumulation of the glacial shelf were determined, the boundaries of the last Late Pleistocene glaciation were identified, and the main paleochannels of the rivers were mapped. Modern changes in natural conditions on the Arctic shelf are associated, to a large extent, with a reduction in the area of ice cover. In this regard, the issues of substantiating the most probable scenarios for the development of the coastal zone and the shelf of the region are of particular importance in order to minimize the expected natural risks. The results obtained as part of these studies will help minimize the risks in the implementation of hydrocarbon exploration and production projects in the licensed areas of Rosneft Oil Company in the Kara Sea by providing reliable initial information on engineering and geological conditions in the areas being developed.
References
1. Nikiforov S.L., Anan'ev R.A., Dmitrevskiy N.N. et al., Geological and geophysical studies on cruise 41 of the R/V akademik Nikolaj Strakhov in Arctic seas in 2019 (In Russ.), Okeanologiya = Oceanology, 2020, V. 60, no. 2, pp. 334–336, DOI: 10.31857/S0030157420010177
2. Dmitrevskiy N.N., Anan'ev R.A., Meluzov A.A. et al., Geological-acoustic studies in the Laptev Sea during the voyage of the Vladimir Buinitskii (In Russ.), Okeanologiya = Oceanology, 2014, V. 54, no. 1, pp. 128–132, DOI: 10.7868/S003015741401002X
3. Seabed morphology of the Russian Arctic shelf: edited by Nikiforov S., Series Oceanography and Ocean Engineering, NY: Nova Science Publishers, Inc., 2010.
4. Sorokhtin N.O., Nikiforov S.L., Koshel' S.M., Kozlov N.E., Geodynamic evolution and morphostructural analysis of the western sector of the Russian Arctic shelf (In Russ.), Vestnik MGTU, 2016, V. 19, no. 1–1, pp. 123–137, DOI: 10.21443/1560-9278-2016-1/1-123-137
5. Sorokhtin N.O., Kozlov