Viscosity of petroleum dispersed systems has been investigated in the region of ‘anomalous’ dependence of shear stress on shear rate under shear rate increasing is accompanied by diminishing of stress. It was shown that fluid flow could be accompanied by oscillations of fluid expenditure which reduce well and tubing productivity. The ways of physical fields application to overcome those oscillations are given.
References
1. Khil'ko S.L., Titov E.V., Fedoseeva A.A.,On the possibility of using two models of the viscosity superanomaly effect for analyzing the flow curves of structured disperse systems, Kolloidnyy zhurnal = Colloid Journal, 2006, V. 68, no. 1, pp. 106-104.
2. Lesin V.I., Features a non-Newtonian oil viscosity relaxation after exposure
to gradients of velocity and magnetic fields (In Russ.), Neftepromyslovoe
delo, 2008, no. 1, pp. 43-46.
3. Lesin V.I., Lesin S.V., “Fractal” formula of non-Newtonian fluid viscosity dependence on shear rate (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2012, no. 3, pp. 46-48.
4. Lesin V.I., Lesin S.V., Fractal theory and experimental research of colloidal
systems viscosity at shear rates close to zero value (In Russ.), Neftyanoe
khozyaystvo = Oil Industry, 2013, no. 7, pp. 111-113.
5. Heimer S., Tezak D., Structure of polydispersed colloids characterised by
light scattering and electron microscopy, Advances in Colloid and Interface
Science, 2002, V. 98, pp. 1-23.
6. Huang A.Y., Berg J.C., Aggregate restructuring by polymer solvency effect,
Journal of Colloid and Interface Science, 2004, V. 279, pp. 440-446.
7. Seto R., Botet R., Auernhammer G.K., Briesen H., Restructuring of colloidal aggregates in shear flow. Coupling interparticle contact models with Stokesian dynamics, The European Physical Journal E., 2012, V. 35, pp. 1-12.
8. Onuma K., Kanzaki N., Multi-angle static and dynamic light scattering investigation of lyzosome association: From crystallization to liquid–liquid phase separation, Journal of Crystal Growth, 2007, V. 304, pp. 452–459.
9. Horwatt S.W., Manas-Zloczower I., Feke D.L., Dispersion behaviour of heterogeneous agglomerates at supercritical stresses, Chemical Engineering
Science, 1992, V. 47, no. 8, pp. 1849-1855.
10. Lesin V.I., Lesin S.V., The “fractal” viscosity formula analysis (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2011, no. 6, pp. 104-107.
11. Vinokurov V.A., Frolov V.I., Krestovnikov M.P. et al., Investigation of the influence wave influence on oil (In Russ.) Neftepererabotka i neftekhimiya, 2012, no. 8, pp. 3-8.
12. Lesin V.I., Lesin S.V., Physical and chemical mechanism of action of fluid
pressure fluctuations in the filtration properties of oil and porous medium
(In Russ.), Burenie i neft', 2003, no. 3, pp. 24-26.
13. Gabdrakhmanov R.A., Lyubetskiy S.V., Shesternina N.V. et al., Analysis of the work of magnetic dewaxer at Leninogorskneft JSC Tatneft (In Russ.) Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 1999, no. 10, pp. 37-40.
14. Persiyantsev M.N., Sazonov Yu.A., Odnoletkov L.S. et al., Analysis of the results of pilot works of magnetic dewaxer in the oil fields of the Orenburg region (In Russ.), Neftepromyslovoe delo, 1998, no. 2, pp. 24-26.