Petrophysical method of estimating Achimov reservoir fluid types with variable salinity of formation waters

UDK: 550.8
DOI: 10.24887/0028-2448-2022-8-56-59
Key words: achimov reservoirs, water-gas zone, elision waters, electric saturation model, flow model, probability of reservoir fluid types
Authors: D.B. Rоdivilov (Tyumen Petroleum Research Center LLC, RF, Tyumen), O.M. Grechneva (Tyumen Petroleum Research Center LLC, RF, Tyumen), I.R. Makhmutov (Tyumen Petroleum Research Center LLC, RF, Tyumen), N.Yu. Natchuk (Tyumen Petroleum Research Center LLC, RF, Tyumen), V.O. Monakhova (Tyumen Petroleum Research Center LLC, RF, Tyumen)

The key objective of the study is to develop a method for probabilistic estimate of the fluid types in the Achimov reservoirs within the East Urengoy license block where the presence of water-gas zones is common.

Currently, the scientific community is considering various hypotheses for the formation of flooded zones in anticlinal Achimov reservoirs. Our study describes the development of the concept associated with the intrusion of fresh elision waters squeezed out of clay seals into the initially gas-bearing reservoir during the neotectonic movements in the Paleogene time and compression of clay cap horizons of the sedimentary cover. The concept of elision waters intrusion implies the desalination of the source formation water which leads to uncertainties in assessing the fluid types and the need to complicate petrophysical models. A complex petrophysical model has been developed for the conditions of variable salinity of formation waters, implying the integration of electrical and flow models. At the same time, the electric model is a modification of the Archi-Dakhnov model adjusted to variable water salinity. The flow model gives an understanding of the critical saturations depending on the reservoir properties. Within the reasonable limit of salinity variability and calculated critical saturations, an algorithm for estimating the fluid types with the probabilities of “gas”, “gas and water”, and “water” has been developed. In total, these probabilities make up a unity (100%). The results of the probabilistic assessment of the fluid type were verified against the field data received from open-hole DSTs and logging-based inflow composition data. The model implementation across the entire well stock allowed to update the contour of the water-gas zone and analyze the distribution of elision waters within the reservoir.

References

1. Pleshanov N.N., Peskova D.N., Zaboeva A.A. et al., Complex analysis of factors that influenced on water saturation forecast of Achimov formation at Gazpromneft licence blocks (In Russ.), PROneft'. Professional'no o nefti, 2020, no. 3(17), pp. 16–25, DOI: https://doi.org/10.7868/S2587739920030027

2. Mukhidinov Sh.V., Belyakov E.O., Determination of mobile water in reservoirs of Achimov thickness (In Russ.), Proneft'. Professional'no o nefti, 2020, no. 4(18), pp. 34–39, DOI: https://doi.org/10.7868/S2587739920040047

3. Grechneva O.M., The hypothesis of gravitational water development in Achimov formations (In Russ.), Gazovaya promyshlennost', 2021, no. 3(813), pp. 32–37.

4. Rodivilov D.B., Grechneva O.M., Natchuk N.Yu., Rusanov A.S.,Petrophysical basis for modeling expelled water in gas saturated reservoirs of the Achimov sequence (In Russ.), Ekspozitsiya Neft' Gaz, 2021, no. 6(85), pp. 41–45, DOI: https://doi.org/10.24412/2076-6785-2021-6-41-45

5. McPhee C., Reed J., Zubizarreta I., Core analysis: A best practice guide, Elsevier, 2015, 852 p.

6. Tiab D., Donaldson E C.,
Petrophysics: theory and practice of measuring reservoir rock and fluid
transport, Elsevier Inc., 2004, 926 p.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .