Simulation of the drilling mud properties at various compositions and inorganic salts concentrations

UDK: 622.244.442.063:543
DOI: 10.24887/0028-2448-2019-4-33-37
Key words: drilling mud, mineralization, bischofite, filtrate, osmotic processes, experiments, simulation
Authors: R.R. Akhmetzyanov (Tyumen Branch of SurgutNIPIneft, Surgutneftegas PJSC, RF, Tyumen), V.N. Zhernakov (Tyumen Branch of SurgutNIPIneft, Surgutneftegas PJSC, RF, Tyumen)

Most of the oil and oil-gas-condensate fields in Eastern Siberia are characterized by complex geological factor. Wells drilling with water-based drilling mud, mineralized by sodium chloride, often does not allow to reach the potential productivity of producing wells. Improving the drilling-in quality of productive reservoirs can be achieved by using hydrocarbon-based fluids. However, the use of such fluids requires special measures to ensure industrial and environmental safety, not always economically justified, including due to the presence of complications, typical for the selected well design and drilling technology. The potential for improving water-based mineralized drilling muds, from the point of view of ensuring of the drilling-in quality, has not yet been exhausted. Water-based drilling muds can be improved on the basis of the results of modern scientific research and using new materials and reagents.

The article presents a theoretical justification and the results of physical simulation of the composition of the drilling mud salt base. The work is aimed at using a possible positive effect from the application of magnesium chloride in the composition of the drilling mud as a substance that promotes thickening of the mud filtrate, inhibition of clays and preserving the filtration properties of the productive reservoir. The results of the experiments, laboratory and pilot works indicate the potential of water-based drilling muds to improve the drilling-in quality of oil and gas saturated productive reservoirs of Eastern Siberia fields with complex mining and geological conditions.

References

1. Nikolaeva L.V., Vasenyova E.G., Buglov E.N., Features of drilling in production horizons at oil fields in Eastern Siberia (In Russ.), Vestnik IrGTU, 2012, no. 9, pp. 68–71.

2. Akhmetzyanov R.R., Zhernakov V.N., Improving the drilling fluid composition for drilling-in terrigenous deposits of Eastern Siberia (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 8, pp. 80–82.

3. Shokarev I.V., Suleymanov R.N., Gulov A.R. et al., Construction of record breaking multilateral well with extended leg at the field of OAO "NOVATEK" Co. in the waters of Tazovsky Gulf (In Russ.), Neftʹ. Gaz. Novatsii, 2011, no. 12, pp. 25–32.

4. Ryabokon' S.A., Tekhnologicheskie zhidkosti dlya zakanchivaniya i remonta skvazhin (Process fluids for completion and repair of wells), Krasnodar: Publ. of NPO Burenie, 2016, 382 p.

5. Angelopulo O.K., Podgornov V.M., Avakov V.E., Burovye rastvory dlya oslozhnennykh usloviy (Drilling fluids for complicated conditions), Moscow: Nedra Publ., 1988, 135 p.

6. Gaydarov A.M., Khubbatov A.A., Norov A.D. et al., Inter-particle interaction in water-base drill fluids and recommendations on controlling properties of such (In Russ.), Nauka i tekhnika v gazovoy promyshlennosti, 2015, no. 4, pp. 65–66.

7. Gudok N.S., Bogdanovich N.N., Martynov V.G., Opredelenie fizicheskikh svoystv neftevodosoderzhashchikh porod (Determination of the physical properties of oil-and-water-containing rocks), Moscow: Nedra Publ., 2007, 592 p.

8. Gamayunov N.I., Gamayunov S.N., Mironov V.A., Osmoticheskiy massoperenos (Osmotic mass transfer), Tverʹ: Publ. of TSTU, 2007, 228 p.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .