Ejector system development for hard-to-recover and unconventional hydrocarbon reserves

UDK: 622.276.53.054.23:621.694
DOI: 10.24887/0028-2448-2017-10-110-112
Key words: pump, ejector system, multiphase mixture, oil, gas
Authors: Yu A. Sazonov, M.A. Mokhov, I.T. Mishchenko, Kh.A. Tumanyan, M.A. Frankov (Gubkin Russian State University of Oil and Gas (National Research University), RF, Moscow)

Gas production from reservoir under waterflood secondary recovery is a topical question in the oil and gas production industry. In this context, selection of additional equipment is critical to ensure effective production. Experience shows that this kind of problematic can be addressed by using ejector systems. The purpose of this research is to determine the main directions in which development of pumping equipment is needed, considering the specific features of using ejector systems in hard-to-recover and unconventional hydrocarbon reserves. The work is aimed at creating new pumping systems using multi-flow ejectors in order to improve the efficiency of oil and gas production.

Jet technology and pumping technology issues are usually handled separately due to an established specialization in the research. To get round this pitfall, it was decided to combine the individual components of the two systems into a single complex, to develop an ejector system for hard-to-recover and unconventional hydrocarbon reserves. When designing the solution, we considered our problem from the angle of three main theories; jet devices, dynamic pumps, and volumetric pumps. In this regard, multi-flow dynamic pumps are particularly promising since their representation in the literature is close to none, even though the technology have been known for a long time. This study demonstrates the possibility of creating a high-speed multistage volume pump while multi-section pumps -separate sections of a dynamic pump paired with sections of a volumetric pump- are also discussed. This configuration is worthy of interest since it enables a reduction in the length and diameter of the assembly, a critical parameter for pumps operating in horizontal wells.

Modern computer programs have significantly simplified and made cheaper conducting experiments, but it is still not yet the time to replace completely physical experiments with numerical ones. In this aspect, the wider use of additive technologies and modern lasers is seen as very promising when it comes to create samples and models.

References

1. Mokhov M.A., Sazonov Yu.A., Mulenko V.V., Pump system modeling (In Russ.), Neft’, gaz i biznes, 2013, no. 11, pp. 66–68.

2. Sazonov Yu.A., Mokhov M.A., Klimenko K.I., Eremin N.A., Mathematical modeling of pump systems (In Russ.), Neft’, gaz i biznes, 2013, no. 8, pp. 62–65.

3. Sazonov Yu.A., Mokhov M.A., Klimenko K.I., Demidov A.V., Pump systems modeling for oil production (In Russ.), Neft’, gaz i biznes, 2013, no. 9, pp. 54–56.

4. Mokhov M.A., Sazonov Yu.A., Dimaev T.N., Gryaznova I.V., New technical solutions in the development of pumping systems for multiphase flow lifting (In Russ.), Gazovaya promyshlennost’ = GAS Industry of Russia, 2013, no. 7, pp. 54–55.

5. Mokhov M.A., Sazonov Yu.A., Demidova A.A., Biktimirova D.R., Researches of pumping systems for oil production and treatment (In Russ.), Neft’, gaz i biznes, 2013, no. 9, pp. 57–59.

6. Sazonov Yu.A., Mokhov M.A., Kakhankin V.A., Jet pump systems for dual completion (In Russ.), Neft’, gaz i biznes, 2013, no. 2, pp. 67–69.

7. Sazonov Yu.A., Mokhov M.A., The research of technical systems for offshore oil fields (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2015, no. 4, pp. 80–82.

8. Sazonov Yu.A., Degovtsov A.V., Kazakova E.S., Klimenko K.I., Multi-flow ejector and a new direction for the development of inkjet technology (In Russ.), Territoriya NEFTEGAZ, 2012, no. 4, pp. 75–77.

9. Sazonov Yu.A., Dimaev T.N., Kazakova E.S., Research of multi-flow ejectors and salvation of problems relating to oil and gas production and pumping (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2012, no. 4, pp. 21–23.

10. Patent no. 2100659 RF. MKI F04 F5/02, Jet pump unit, Inventors: Sazonov Yu.A., Shmidt A.P., Eliseev V.N., Malov B.A., Yudin I.S.

11. Patent no. 2100660 RF. MKI F04 F5/02, Jet apparatus, Inventors: Sazonov Yu.A., Zaytsev Yu.V., Eliseev V.N., Malov B.A., Yudin I.S.

12. Utility patent no. 30169. MPK 7 F04 F05/02, Struynyy apparat (Jet apparatus), Inventors: Eliseev V.N., Sazonov Yu.A., Zayakin V.I.

13. Sazonov Yu.A., Osnovy rascheta i konstruirovaniya nasosno-ezhektornykh ustanovok (Basics of calculation and design of pump-ejector systems), Moscow: Neft’ i gaz, 2012, 305 p.

14. Utility patent no. 72736. MPK F04F 5/14, Ezhektor (Ejector), Inventors: Sazonov Yu.A., Zayakin V.I.

15. Utility patent no. 120162, Struynyy nasos (Jet pump), Inventors: Sazonov Yu.A., Kazakova E.S.

16. Utility patent no. 132502, Pogruzhnaya nasosnaya ustanovka (Submersible pumping unit), Inventors: Mokhov M.A., Sazonov Yu.A., Dimaev T.N., Tigov P.N.

Gas production from reservoir under waterflood secondary recovery is a topical question in the oil and gas production industry. In this context, selection of additional equipment is critical to ensure effective production. Experience shows that this kind of problematic can be addressed by using ejector systems. The purpose of this research is to determine the main directions in which development of pumping equipment is needed, considering the specific features of using ejector systems in hard-to-recover and unconventional hydrocarbon reserves. The work is aimed at creating new pumping systems using multi-flow ejectors in order to improve the efficiency of oil and gas production.

Jet technology and pumping technology issues are usually handled separately due to an established specialization in the research. To get round this pitfall, it was decided to combine the individual components of the two systems into a single complex, to develop an ejector system for hard-to-recover and unconventional hydrocarbon reserves. When designing the solution, we considered our problem from the angle of three main theories; jet devices, dynamic pumps, and volumetric pumps. In this regard, multi-flow dynamic pumps are particularly promising since their representation in the literature is close to none, even though the technology have been known for a long time. This study demonstrates the possibility of creating a high-speed multistage volume pump while multi-section pumps -separate sections of a dynamic pump paired with sections of a volumetric pump- are also discussed. This configuration is worthy of interest since it enables a reduction in the length and diameter of the assembly, a critical parameter for pumps operating in horizontal wells.

Modern computer programs have significantly simplified and made cheaper conducting experiments, but it is still not yet the time to replace completely physical experiments with numerical ones. In this aspect, the wider use of additive technologies and modern lasers is seen as very promising when it comes to create samples and models.

References

1. Mokhov M.A., Sazonov Yu.A., Mulenko V.V., Pump system modeling (In Russ.), Neft’, gaz i biznes, 2013, no. 11, pp. 66–68.

2. Sazonov Yu.A., Mokhov M.A., Klimenko K.I., Eremin N.A., Mathematical modeling of pump systems (In Russ.), Neft’, gaz i biznes, 2013, no. 8, pp. 62–65.

3. Sazonov Yu.A., Mokhov M.A., Klimenko K.I., Demidov A.V., Pump systems modeling for oil production (In Russ.), Neft’, gaz i biznes, 2013, no. 9, pp. 54–56.

4. Mokhov M.A., Sazonov Yu.A., Dimaev T.N., Gryaznova I.V., New technical solutions in the development of pumping systems for multiphase flow lifting (In Russ.), Gazovaya promyshlennost’ = GAS Industry of Russia, 2013, no. 7, pp. 54–55.

5. Mokhov M.A., Sazonov Yu.A., Demidova A.A., Biktimirova D.R., Researches of pumping systems for oil production and treatment (In Russ.), Neft’, gaz i biznes, 2013, no. 9, pp. 57–59.

6. Sazonov Yu.A., Mokhov M.A., Kakhankin V.A., Jet pump systems for dual completion (In Russ.), Neft’, gaz i biznes, 2013, no. 2, pp. 67–69.

7. Sazonov Yu.A., Mokhov M.A., The research of technical systems for offshore oil fields (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2015, no. 4, pp. 80–82.

8. Sazonov Yu.A., Degovtsov A.V., Kazakova E.S., Klimenko K.I., Multi-flow ejector and a new direction for the development of inkjet technology (In Russ.), Territoriya NEFTEGAZ, 2012, no. 4, pp. 75–77.

9. Sazonov Yu.A., Dimaev T.N., Kazakova E.S., Research of multi-flow ejectors and salvation of problems relating to oil and gas production and pumping (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2012, no. 4, pp. 21–23.

10. Patent no. 2100659 RF. MKI F04 F5/02, Jet pump unit, Inventors: Sazonov Yu.A., Shmidt A.P., Eliseev V.N., Malov B.A., Yudin I.S.

11. Patent no. 2100660 RF. MKI F04 F5/02, Jet apparatus, Inventors: Sazonov Yu.A., Zaytsev Yu.V., Eliseev V.N., Malov B.A., Yudin I.S.

12. Utility patent no. 30169. MPK 7 F04 F05/02, Struynyy apparat (Jet apparatus), Inventors: Eliseev V.N., Sazonov Yu.A., Zayakin V.I.

13. Sazonov Yu.A., Osnovy rascheta i konstruirovaniya nasosno-ezhektornykh ustanovok (Basics of calculation and design of pump-ejector systems), Moscow: Neft’ i gaz, 2012, 305 p.

14. Utility patent no. 72736. MPK F04F 5/14, Ezhektor (Ejector), Inventors: Sazonov Yu.A., Zayakin V.I.

15. Utility patent no. 120162, Struynyy nasos (Jet pump), Inventors: Sazonov Yu.A., Kazakova E.S.

16. Utility patent no. 132502, Pogruzhnaya nasosnaya ustanovka (Submersible pumping unit), Inventors: Mokhov M.A., Sazonov Yu.A., Dimaev T.N., Tigov P.N.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

22.09.2021
21.09.2021
13.09.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина