Physical-chemical and complex EOR/IOR technologies for the Permian-Carboniferous deposit of heavy oil of the Usinskoye oil field

UDK: 622.276.1/.4
DOI: 10.24887/0028-2448-2017-7-26-29
Key words: improved oil recovery (IOR), enhanced oil recovery (EOR), high-viscosity oils, physical and chemical technologies, thermal methods, gels, water shutoff, surfactant compositions, pilot tests, Permian-Carboniferous deposits deposit, Usinskoye oilfield
Authors: L.K. Altunina, V.A. Kuvshinov, I.V. Kuvshinov, L.A. Stasyeva (Institute of Petroleum Chemistry, Siberian Branch of RAS, RF, Tomsk), M.V. Chertenkov (LUKOIL-Engineering LLC, RF, Moscow), L.S. Shkrabyuk, D.V. Andreev (PermNIPIneft Branch of LUKOIL-Engineering LLC in Perm, RF, Ukhta)

Nowadays, fundamental and applied work on physical-chemical methods for increasing oil recovery and intensification of heavy oil production is being made, both in conjunction with thermal methods and under natural conditions, without thermal treatment. In the Institute of Petroleum Chemistry SB RAS, ‘intelligent’ compositions based on thermotropic inorganic and polymeric sol-forming and gel-forming compositions with adjustable viscosity and density generated in-situ and oil-displacing compositions based on surfactants with controlled viscosity and alkalinity for injection into oil reservoirs in order to increase oil recovery, reduce water cut in production wells and intensify oil production in hard operating conditions.

At the Permian-Carboniferous deposit of high-viscosity oil of the Usinskoye oilfield of LUKOIL-Komi LLC together with the IPC SB RAS and OSK LLC, have been carrying out field tests of complex technologies of steam and physicochemical effects to increase oil recovery and carry out industrial tests of developed technologies, as well as "cold" technologies, without thermal treatment.

In this paper, are presented the results of the pilot industrial tests and industrial application of thermotropic compositions developed for the improvement of oil recovery in the IPC SB RAS. A significant increase in production rate and a decrease in water cut in production have been achieved.

The large-scale industrial application of new complex technologies for increasing oil recovery will allow prolonging the cost-effective exploitation of the fields that are at a late stage of development and involve in the development of a field with hard-to-recover hydrocarbon reserves, including deposits of high-viscosity oils.

References

1. Altunina L.K., Kuvshinov V.A., Improved oil recovery of high-viscosity oil pools with physicochemical methods at thermal-steam treatments, Oil&Gas Science and Technology, 2008, V. 63, no. 1, pp. 37–48.

2. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Field experience of thermotropic compositions application for enhanced oil recovery (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 1, pp. 44-47.

3. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Physico-chemical and complex EOR technologies for high-viscosity oil deposits (In Russ.), Neft' i Gaz, 2015, no. 3 (87), pp. 31–50.

4. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Physicochemical and integrated technologies for enhanced oil recovery from deposits with difficult-to-recover reserves, Proceedings of 17th Scientific-Practical Conference on Oil and Gas Geological Exploration and Development - Geomodel 2015, Gelendzhik, 2015, pp. 101-105, URL: http://earthdoc.eage.org/publication/publicationdetails/?publication=82503.

5. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V. et al., Pilot tests of new EOR technologies for heavy oil reservoirs, SPE 176703-MS, 2015.

6. Altunina L., Kuvshinov V., Kuvshinov I., Stas'eva L., Kozlov V., Chertenkov M., Shkrabyuk L., Technology "gel in the gel." EOR technologies for deposits of heavy high-viscosity oil (In Russ.), Oil&Gas Russia, 2017, no. 7 (1117), pp. 28–34.

7. Patent no. 2467165 RF, MPK E21B 43/32, E21B 33/13, Method control over oil deposit development, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

8. Patent no. 2131971 RF, MPK E21B 43/22, Composition for increase of oil recovery from formation, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A., Gusev V.V., Gaysin R.F.

9. Patent no. 2577556 RF, MPK C09K 8/86, Composition for increase of oil recovery and method of preparation, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

10. Patent no. 2361074 RF, MPK E21B 43/24, C09K 8/592, Procedure for development of deposits of high viscous oil (Versions), Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

11. Patent no. 2610958 RF, MPK E21B 43/22, C09K 8/584, Method of development of oil deposit, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

12. Patent no. 2546700 RF, MPK C09K 8/584, C09K 8/74, Composition for increase of oil recovery of formations (Versions), Inventors: Altunina L.K., Kuvshinov V.A, Stas'eva L.A.

13. Patent no. 2572439 RF, MPK C09K, 8/584, Composition to up bed production rate (Versions), Inventors:  Altunina L.K., Kuvshinov V.A., Stas'eva L.A.    

Nowadays, fundamental and applied work on physical-chemical methods for increasing oil recovery and intensification of heavy oil production is being made, both in conjunction with thermal methods and under natural conditions, without thermal treatment. In the Institute of Petroleum Chemistry SB RAS, ‘intelligent’ compositions based on thermotropic inorganic and polymeric sol-forming and gel-forming compositions with adjustable viscosity and density generated in-situ and oil-displacing compositions based on surfactants with controlled viscosity and alkalinity for injection into oil reservoirs in order to increase oil recovery, reduce water cut in production wells and intensify oil production in hard operating conditions.

At the Permian-Carboniferous deposit of high-viscosity oil of the Usinskoye oilfield of LUKOIL-Komi LLC together with the IPC SB RAS and OSK LLC, have been carrying out field tests of complex technologies of steam and physicochemical effects to increase oil recovery and carry out industrial tests of developed technologies, as well as "cold" technologies, without thermal treatment.

In this paper, are presented the results of the pilot industrial tests and industrial application of thermotropic compositions developed for the improvement of oil recovery in the IPC SB RAS. A significant increase in production rate and a decrease in water cut in production have been achieved.

The large-scale industrial application of new complex technologies for increasing oil recovery will allow prolonging the cost-effective exploitation of the fields that are at a late stage of development and involve in the development of a field with hard-to-recover hydrocarbon reserves, including deposits of high-viscosity oils.

References

1. Altunina L.K., Kuvshinov V.A., Improved oil recovery of high-viscosity oil pools with physicochemical methods at thermal-steam treatments, Oil&Gas Science and Technology, 2008, V. 63, no. 1, pp. 37–48.

2. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Field experience of thermotropic compositions application for enhanced oil recovery (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 1, pp. 44-47.

3. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Physico-chemical and complex EOR technologies for high-viscosity oil deposits (In Russ.), Neft' i Gaz, 2015, no. 3 (87), pp. 31–50.

4. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Physicochemical and integrated technologies for enhanced oil recovery from deposits with difficult-to-recover reserves, Proceedings of 17th Scientific-Practical Conference on Oil and Gas Geological Exploration and Development - Geomodel 2015, Gelendzhik, 2015, pp. 101-105, URL: http://earthdoc.eage.org/publication/publicationdetails/?publication=82503.

5. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V. et al., Pilot tests of new EOR technologies for heavy oil reservoirs, SPE 176703-MS, 2015.

6. Altunina L., Kuvshinov V., Kuvshinov I., Stas'eva L., Kozlov V., Chertenkov M., Shkrabyuk L., Technology "gel in the gel." EOR technologies for deposits of heavy high-viscosity oil (In Russ.), Oil&Gas Russia, 2017, no. 7 (1117), pp. 28–34.

7. Patent no. 2467165 RF, MPK E21B 43/32, E21B 33/13, Method control over oil deposit development, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

8. Patent no. 2131971 RF, MPK E21B 43/22, Composition for increase of oil recovery from formation, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A., Gusev V.V., Gaysin R.F.

9. Patent no. 2577556 RF, MPK C09K 8/86, Composition for increase of oil recovery and method of preparation, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

10. Patent no. 2361074 RF, MPK E21B 43/24, C09K 8/592, Procedure for development of deposits of high viscous oil (Versions), Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

11. Patent no. 2610958 RF, MPK E21B 43/22, C09K 8/584, Method of development of oil deposit, Inventors: Altunina L.K., Kuvshinov V.A., Stas'eva L.A.

12. Patent no. 2546700 RF, MPK C09K 8/584, C09K 8/74, Composition for increase of oil recovery of formations (Versions), Inventors: Altunina L.K., Kuvshinov V.A, Stas'eva L.A.

13. Patent no. 2572439 RF, MPK C09K, 8/584, Composition to up bed production rate (Versions), Inventors:  Altunina L.K., Kuvshinov V.A., Stas'eva L.A.    



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

24.11.2021
23.11.2021
02.11.2021
Конкурс на соискание молодежной премии имени академика И.М. Губкина