Investigation of destruction of connecting parts of oil-field pipelines during operation

UDK: 622.692.4-192
DOI: 10.24887/0028-2448-2022-4-90-94
Key words: pipeline, fittings, oilfield environment, carbon dioxide corrosion, bacterial contamination, corrosion products, corrosion resistance
Authors: М.А. Vyboischik (Togliatti State University, RF, Togliatti), A.V. Ioffe (IT-Service OOO, RF, Samara), S.A. Knyazkin (IT-Service OOO, RF, Samara), T.V. Tetyueva (IT-Service OOO, RF, Samara), A.V. Fedotova (IT-Service OOO, RF, Samara)

Pipeline fittings (elbows, adaptors, T-couplings, etc.) are more exposed to stress-corrosion fracture than straight sections of a pipeline. The research and tests were performed to enhance performance of oilfield pipeline systems. A test batch of steel 13HFА (high-grade steel containing 0.13% of carbon, chrome and vanadium) pipeline fittings was manufactured to be mounted on oil and gas line pipes featuring improved mechanical properties and extra-high resistance to corrosive oilfield media. Field (bypass) tests of the pipeline fittings (elbows, adaptors, T-couplings, etc.) test batch were run (for 19, 23 and for 42 months) in an operational in-field flow line and oil-gathering line of a West-Siberian oilfield with high contents of dissolved H2S and CO2 as well as with bacterial contamination. Changes in structural and mechanical performance and corrosion resistance were measured prior to and after the tests. General corrosion, local corrosion and bacterial corrosion rates were quantified in course of the tests. The structure, chemical and phase composition of corrosion products as well as their change versus the time of testing were identified. Specific features of stress-corrosion fracture and changes of general and local corrosion rates versus time in service are identified for each type of pipe fittings. High intensity of bacterial corrosion in pipeline fittings as compared with pipeline straight sections is pointed out. Heat treatment conditions are proposed that form the 13HFА structural condition which gives pipeline fittings persistent properties and corrosion resistance for continuous operation in oilfield media with contents of carbon dioxide. 

References

1. Zav’yalov V.V., Problemy ekspluatatsionnoy nadezhnosti truboprovodov na pozdney stadia razrabotki mestorozhdeniy (Pipelines operating reliability problems in the late stages of field development), Moscow: Publ. of VNIIOENG, 2005, 332 p.

2. Vyboyshchik M.A., Ioffe A.V., Razrabotka stali, stoykoy k uglekislotnoy korrozii v neftedobyvaemykh sredakh (Development of steel resistant to carbon dioxide corrosion in oil-producing environments), In: Perspektivnye materialy (Promising Materials), Part 7, 2017, pp. 115–160.

3. Ioffe A.V., Tetyueva T.V., Revyakin V.A. et al., Stress-corrosion fracture of electric-welded pipes in the high-aggressiveness oilfield mediums (In Russ.), Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 10, pp. 22–28.

4. Vyboyshchik M.A., Ioffe A.V., Borisenkova E.A. et al., Corrosion damage of oil line pipes from chromium-molybdenum-containing steels under conditions of high aggressiveness of produced medium (In Russ.), Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 10, pp. 29–33.

5. Vyboyshchik M.A., Zyryanov A.O., Gruzkov I.V., Fedotova A.V., Carbon dioxide corrosion of oilfield casing and tubular goods in media saturated with H2S and Cl (In Russ.), Vektor nauki Tol'yattinskogo gos. Universiteta, 2019, no. 2(48), pp. 6–17.

6. Bosch C., Jansen J-P., Poepperling R.K., Influence of chromium contents of 0,5 to 1,0 % on the corrosion behavior of low alloy steels for large – diameter pipes in CO2 containing aqueous media, Corrosion, 2003, рaper no. 03118, pp. 1–19.

7. Sun J., Sun C., Lin X. et al., Effect of chromium on corrosion behavior of P110 steels in CO2–H2S environment with high pressure and high temperature, Materials, 2016, V. 9, no. 3, 200 p., DOI: 10.3390/ma9030200

8. Ko M., Ingham B., Laycock N., Williams D.E., In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels, Corrosion Science, 2014, V. 80, pp. 237–246, DOI:10.1016/j.corsci.2013.11.035

Pipeline fittings (elbows, adaptors, T-couplings, etc.) are more exposed to stress-corrosion fracture than straight sections of a pipeline. The research and tests were performed to enhance performance of oilfield pipeline systems. A test batch of steel 13HFА (high-grade steel containing 0.13% of carbon, chrome and vanadium) pipeline fittings was manufactured to be mounted on oil and gas line pipes featuring improved mechanical properties and extra-high resistance to corrosive oilfield media. Field (bypass) tests of the pipeline fittings (elbows, adaptors, T-couplings, etc.) test batch were run (for 19, 23 and for 42 months) in an operational in-field flow line and oil-gathering line of a West-Siberian oilfield with high contents of dissolved H2S and CO2 as well as with bacterial contamination. Changes in structural and mechanical performance and corrosion resistance were measured prior to and after the tests. General corrosion, local corrosion and bacterial corrosion rates were quantified in course of the tests. The structure, chemical and phase composition of corrosion products as well as their change versus the time of testing were identified. Specific features of stress-corrosion fracture and changes of general and local corrosion rates versus time in service are identified for each type of pipe fittings. High intensity of bacterial corrosion in pipeline fittings as compared with pipeline straight sections is pointed out. Heat treatment conditions are proposed that form the 13HFА structural condition which gives pipeline fittings persistent properties and corrosion resistance for continuous operation in oilfield media with contents of carbon dioxide. 

References

1. Zav’yalov V.V., Problemy ekspluatatsionnoy nadezhnosti truboprovodov na pozdney stadia razrabotki mestorozhdeniy (Pipelines operating reliability problems in the late stages of field development), Moscow: Publ. of VNIIOENG, 2005, 332 p.

2. Vyboyshchik M.A., Ioffe A.V., Razrabotka stali, stoykoy k uglekislotnoy korrozii v neftedobyvaemykh sredakh (Development of steel resistant to carbon dioxide corrosion in oil-producing environments), In: Perspektivnye materialy (Promising Materials), Part 7, 2017, pp. 115–160.

3. Ioffe A.V., Tetyueva T.V., Revyakin V.A. et al., Stress-corrosion fracture of electric-welded pipes in the high-aggressiveness oilfield mediums (In Russ.), Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 10, pp. 22–28.

4. Vyboyshchik M.A., Ioffe A.V., Borisenkova E.A. et al., Corrosion damage of oil line pipes from chromium-molybdenum-containing steels under conditions of high aggressiveness of produced medium (In Russ.), Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 10, pp. 29–33.

5. Vyboyshchik M.A., Zyryanov A.O., Gruzkov I.V., Fedotova A.V., Carbon dioxide corrosion of oilfield casing and tubular goods in media saturated with H2S and Cl (In Russ.), Vektor nauki Tol'yattinskogo gos. Universiteta, 2019, no. 2(48), pp. 6–17.

6. Bosch C., Jansen J-P., Poepperling R.K., Influence of chromium contents of 0,5 to 1,0 % on the corrosion behavior of low alloy steels for large – diameter pipes in CO2 containing aqueous media, Corrosion, 2003, рaper no. 03118, pp. 1–19.

7. Sun J., Sun C., Lin X. et al., Effect of chromium on corrosion behavior of P110 steels in CO2–H2S environment with high pressure and high temperature, Materials, 2016, V. 9, no. 3, 200 p., DOI: 10.3390/ma9030200

8. Ko M., Ingham B., Laycock N., Williams D.E., In situ synchrotron X-ray diffraction study of the effect of chromium additions to the steel and solution on CO2 corrosion of pipeline steels, Corrosion Science, 2014, V. 80, pp. 237–246, DOI:10.1016/j.corsci.2013.11.035


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

29.06.2022
23.06.2022
17.06.2022