Infrastructure reengineering as an effective tool for maintaining base production

UDK: 622.276.012.69
DOI: 10.24887/0028-2448-2022-1-77-81
Key words: re-engineering infrastructure, ground-based infrastructure, infrastructure constraints, field gathering system, treatment facilities, increased water extraction, water disposal, reduced piping, reduced pressure in field gathering system
Authors: G.G. Gilaev (Kuban State Technological University, RF, Krasnodar), M.Ya. Khabibullin (Oktyabrsky Branch of Ufa State Petroleum Technological University, RF, Oktyabrsky), D.G. Antoniadi (Kuban State Technological University, RF, Krasnodar; NK Rosneft – NTC LLC, RF, Krasnodar)

The hydrocarbon production process is characterized by operational features that are unique for each region. An extensive list of physical and chemical parameters of the fluid, different depths of bedding, many in-situ complicating factors of production, different climatic conditions set the vector for the development of the oil and gas industry for each region. In order to maintain production at the current level, oil companies are forced to seek new horizons for drilling wells and carry out various geological and technical measures to intensify oil production. In the same time these measures contribute to a significant increase in the volume of produced formation water. This fact has a direct, negative impact on the existing ground infrastructure (oil treatment and gas compression facilities, reservoir pressure maintenance, power supply, etc.) and engineering networks. One of the most effective methods to reduce operating costs at mature oil production assets is reengineering of onshore infrastructure facilities. Reengineering measures allow to optimize the production process, to unload existing on-site facilities, the collection system, to reduce hydraulic losses for oil transportation and pumping of produced water. The development of a reengineering program is carried out taking into account the assessment of the prospects and the selection of the most optimal measures, using scenario planning. As part of the analysis of the impact on the production process, 4 main directions of reengineering on a mature asset have been identified, which are the foundation of the production process in terms of ground infrastructure. The authors propose a solution that will contribute to ensuring the efficiency of oil and gas production processes, extend the life cycle of mature oil and gas production assets of the Russian Federation and their economic profitability.

References

1. Gilaev G.G., Control of technological processes on an oil output intensification (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2004, no. 10, pp. 74–77.

2. Tsykin I.V., Zav'yalov O.V., Solovey N.S., Mature deposits infrastructure reengineering unification (In Russ.), Truboprovodnyy transport, 2011, no. 5 (27), pp. 4–6.

3. Wilfredo A.R., Colina J., Montero L. et al., Re-engineering tank farms, SPE-38818-MS, 1997, DOI: https://doi.org/10.2118/38818-MS

4. V.A. Smyslov, M.S. Meleshko, T.P. Chaplygina et al., Mathematical approaches to solving the reengineering problems (In Russ.), Nauchno-tekhnicheskiy vestnik OAO “NK “Rosneft'”, 2016, no. 2, pp. 80–84.

5. Protsessy i apparaty tekhnologiy sbora i podgotovki nefti i gaza na promyslakh (Processes and devices of technologies for gathering and treating oil and gas in the fields): edited by Kudinov V.I., Moscow – Izhevsk: Publ. of Institute for Computer Science, 2013, 471 p.

6. Khabibullin M.Ya., Systematization of methods of water injection in wells (In Russ.), Neftegazovoe delo, 2019, V. 17, no. 3, pp. 80–86, DOI: 10.17122/ngdelo-2019-3-80-86.

7. Gilaev G.G., Gladunov O.V. et al., Facilities optimization as an element of cost management in the oil & gas field development (In Russ.), Nauchno-tekhnicheskiy vestnik OAO “NK “Rosneft'”, 2015, no. 3 (40), pp. 78–80.

8. Gilaev G.G., Gladunov O.V., Grishagin A.V. et al., Improving the validity of economic evaluations of measures to optimize structures at ground oil single wells (In Russ.), Nauchno-tekhnicheskiy vestnik OAO “NK “Rosneft'”, 2016, no. 2, pp.  53–55.

9. Khabibullin M.Ya., Development of the design of the sucker-rod pump for sandy wells, IOP Conference Series: Materials Science and Engineering, 2019, DOI: 10.1088/1757-899X/560/1/012065.

10. Khabibullin M.Ya., Research of processes in a pipe string at a wellhead pulse injection of liquid to a well (In Russ.), Neftegazovoe delo, 2018, V. 16, no. 6, pp. 34 – 39, DOI:10.17122 / ngdelo2018-6-34-39

11. Khabibullin M.Ya., Increasing efficiency of liquid systems separation for formation fluid gathering (In Russ.), Neftegazovoe delo, 2020, V. 18, no. 2, pp. 64–71, DOI:10.17122/ngdelo-2020-2-64-71.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .