

К ЛУКОЙЛ

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ ЛУКОЙЛ-Инжиниринг

Аналитическое определение критических градиентов фильтрации для низкопроницаемых коллекторов, как альтернатива экспериментальным исследованиям керна.

Инженер 1-й категории отдела проектирования и мониторинга разработки Южного региона	О.Н. Шевченко
Специалист 1-й категории Лаборатории интерпретации индикаторных исследований	М.В. Топилин
Заведующий лабораторией специальных исследований керна	Д.Ю. Бунин

ЛУКОЙЛ-Инжин

* Актуальность работы

Фильтрация флюида в низкопроницаемых коллекторах с абсолютной газопроницаемостью менее 2·10⁻³мкм² существенно затруднена, ввиду значительным сужением поровых каналов, что в свою очередь приводит к нарушениям линейного закона фильтрации Дарси и характеризуется наличием предельных градиентов давления.

Использование линейного закона фильтрации Дарси при создании ГДМ, приводит к формированию оптимистичных прогнозов и нерациональной системы разработки залежи.

Нель работы

Сравнение аналитических расчетов критических градиентов давления с результатами экспериментальных данных для создания ГДМ с использованием функции нелинейной фильтрации, для месторождений с проницаемостью коллектора менее 2·10⁻³мкм², на примере месторождения им. В.Н. Виноградова

* Варианты решения проблемы

- Применение функции OVPG (нелинейной фильтрации) для улучшения качества прогнозных показателей добычи
- > Аналитические расчеты критических градиентов фильтрации для ГДМ
- Экспериментальные градиенты и их сравнение с аналитическими расчетами

Месторождение им. В.Н. Виноградова. Геолого-физическая характеристика пласта N

Параметры	Значения
Ср. гл. залегания кровли (а.о.), м	2216.8 (-1909.4)
Ср. эф. нефтенасыщенная толщина, м	5.4
Коэффициент пористости	0.18
Коэффициент нефтенасыщенности	0.37
Проницаемость, 10 ⁻³ мкм ²	0.87
Коэффициент песчанистости	0.72
Расчлененность	3.2
Начальное пластовое давление, МПа	20.1

Моделирование с учетом нелинейной фильтрации

Область дренирования ГС с МГРП в условиях фильтрации:

Для повышения качества и достоверности прогноза в ГДМ учтена функция нелинейной фильтрации:

- в межскважинном пространстве образуются «застойные зоны» - области низких градиентов давления (<0.1 МПа/м).
- в ГДМ использована опция «запирающего» градиента давления.

Градиент давления, бар/м Моделирование нелинейной фильтрации в Tempest MORE осуществлялось с помощью опции OVPG. Данная опция включает три параметра – множитель на поток нефти (F₀), начальный градиент давления (GP₀) и предельный градиент давления (GP₁).

Подвижность нефти (F₀) увеличивается при достижении начального градиента (GP₀) и достигает максимума при предельном (GP₁).

* Байков В.А. Нелинейная фильтрация в низкопроницаемых коллекторах. Анализ и интерпретация результатов лабораторных исследований керна Приобского месторождения / В.А. Байков, Р.Р. Галеев, А.В. Колонских и др. // Вестник ОАО «НК «Роснефть». – 2013. – Вып. 31. – № 2. – С. 9–12.

Участок ОПР 1. Характеристики сектора ГДМ

D

000 000		T M
000		
000		Ге
000	31.1	L0.2015 г
000 000		2
000	i	
00		
00		
00		5
00	+ AM	PRY N

Характерис Г	тика сектора ДМ	Мин.	Макс.	Среднее	
Нефтенасыщен	НОСТЬ	0,27	0,49	0,38	
Пористость		0,161	0,211	0,183	
Проницаемость,	ость, 10 ⁻³ мкм ²	0,23	3,38	1,09	
Начальный град	ный градиент, бар/м		0,7	2,3	
Предельный гра	адиент, бар/м	134,5	3,1	15,3	
Трещины МГРП	полудлина, м	90	257	171	
	проницаемость, мкм ²	100	477	260	Нефтенасыщенность, д
	деградация, сут	5	40	15	0.0 0.10 0.20 0.30 0.40 0.50
Геологические : тыс.т	запасы нефти,		5 147		

16.04.2017 г (18 мес)

01.11.2018 г (37 мес)

Начальный градиент давления

УРАВНЕНИЕ НАЧАЛЬНОГО ГРАДИЕНТА ДАВЛЕНИЯ

$$\frac{\Delta P}{L} = \frac{0,0018As(1-m)^2}{a\rho gk}$$

где А - константа Гамакера Дж., 10

α – межмолекулярные расстояния в жидкости м,

фильтрующегося плотность ρ флюида кг/м³,

k – проницаемость среды м²,

s – удельная поверхность частиц,

т – пористость среды.

Распределение скорости движения жидкости в поровом канале

ШЛУКОЙЛ

* Чилингар Г.В. Аномально высокие пластовые давления в природных геофлюидодинамических системах / Г.В. Чилингар, Н.А. Еременко, А.Г. Арье // Геология нефти и газа. – 1997.– № 5. – С. 19-27.

Предельный градиент давления

Физическая картина поровой среды в низкопроницаемых коллекторах

УРАВНЕНИЕ ПРЕДЕЛЬНОГО ГРАДИЕНТА ДАВЛЕНИЯ

$$\frac{\Delta P}{L} = \frac{12 \cdot 10^{-5} \rho d_{_{\Im}}^2}{mk^{\frac{3}{2}}} V^{*2}$$

где V* - критическая скорость фильтрации,

*d*э – эффективный диаметр песчинок м,

 ρ — плотность фильтрующегося флюида кг/м³, k — проницаемость среды м², m — пористость среды.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА УИК

Технические характеристики установки

- 1. Максимальное пластовое давление 40 МПа.
- 2. Максимальное горное давление 80 МПа.
- 3. Расход жидкости 0,00001 мл/мин 30 мл/мин.
- 4. Максимальная пластовая температура 130°С.
- 5. Высокоточные насосы высокого давления.
- Минимальный измеряемый перепад диф. манометром 10 Па, максимальный 1МПа.
- Основная относительная погрешность измерения абсолютного давления (приведенная к полной шкале датчика)... ± 1 %;
- Основная относительная погрешность измерения дифференциального давления (приведенная к полной шкале датчика).. ± 0,5 %;
- 9. Погрешность измерения объема в основной системе (включая погрешность насосов высокого давления и температурную)......0,0106 мл;
- 10. Точность измерения температуры кернодержателя...... \pm 0,5 °C;
- 11. Точность поддержания температуры кернодержателя... \pm 0,25 °C;
- 12. Время непрерывной работы.....не лимитируется

Методика определения начального и предельного градиентов давления в процессе проведения эксперимента

Экспериментальные исследования по определению параметров нелинейной фильтрации (2018г.)

Характерная экспериментальная зависимость

Сложности в процессе проведения эксперимента

- Поддержание постоянной температуры помещения;
- Длительное проведение эксперимента (больше 1,5 месяца на один образец); 2.
- Чувствительность оборудования к малым перепадам давления при исследовании на 3. малых скоростях фильтрации.

*авторы интерпретации экспериментальных исследований - специалисты ОПиМРЮР И.Р. Якупова и Е.С. Туманова

ШЛУКОЙЛ

8

6

5

4

3

2

1

Ω

10

MNa/m

градиент,

Предельный

Результаты адаптации ГДМ модели участка ОПР-1

Примеры адаптации забойного давления, дебита жидкости и воды по скважине участка ОПР 1

Выводы

- Использование функции OVPG позволило улучшить качество адаптации гидродинамической модели месторождения им. В.Н. Виноградова.
- Эффективные начальные градиенты давлений, полученные в результате проведенных экспериментов при фильтрации флюидов показывают, что в зонах пласта с абсолютной проницаемостью выше 5-8·10⁻³ мкм² течения жидкостей будут подчиняться линейным законам фильтрации. В зонах низких проницаемостей наблюдаются ярко выраженные нелинейные эффекты.
- Использование аналитических зависимостей для расчета критических градиентов фильтрации позволило так же произвести адаптацию модели к истории разработки.

Всегда в движении!