Логин:
Пароль:
Регистрация
Забыли свой пароль?

Improving the structural strength and mechanical properties of plugging material

UDK: 622.245.422.4 : 66.022
DOI: 10.24887/0028-2448-2019-12-115-117
Key words: cement slurry, polymers, absorption, foam, admixture
Authors: A.V. Samsykin (RN-BashNIPIneft LLC, RF, Ufa), I.I. Yarmukhametov (Ufa State Petroleum University, RF, Ufa), V.E. Trofimov (RN-BashNIPIneft LLC, RF, Ufa), F.A. Agzamov (Ufa State Petroleum University, RF, Ufa)

The purpose of this work was to study the current issue of improving the structural strength and mechanical properties of grouting and insulating materials based on cements, including lightweight, used to prevent and eliminate absorption zones of different intensities. The objective of the research is to select promising polymer additives or fillers and study their impact on improving the durability of lightweight cement stone exposed to dynamic influences as a result of various technological operations in the drilling process. To solve this problem in the formulation of the plugging composition, a complex application in two aggregate states of a high-molecular polymer is proposed, which ensures the maintenance of tightness in the formed lightweight cement stone, as well as ensuring its integrity through the manifestation of the «self-healing effect». The authors constructed an experimental setup designed for laboratory studies of physical, mechanical and structural properties of samples of lightweight cement-foam grouting compositions. On the basis of the obtained results of experimental studies, formulations of lightweight plugging insulating compositions for eliminating high-intensity absorption of drilling mud were obtained. In addition, partially destroyed samples of lightweight cement-foam compositions containing a high-molecular polymer simultaneously in a hydrophobic and hydrophilic state revealed the ability to regenerate, the so-called «self-healing effect», which helps to restore the integrity and maintain the integrity of the cement stone in time under dynamic conditions.

Obtained results may be used both during eliminating absorption zones and in the process of cementing wells by means of lightweight grouting compositions.

References

1. Samsykin A.V., Yarmukhametov I.I., Samsykina A.V., Enhanced cement compositions for varied rate lost circulation control in drilling (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2012, no. 5, pp. 32–34.

2. Shaydullin V.A., Levchenko E.A., Valieva O.I., Akhmerov I.A., Selection of grouting compositions for water shut-off in low-permeability intervals (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 6, pp. 94–98.

3. Galeev S.R., Lind Yu.B., Khashper A.L. et al., Prognozirovanie parametrov bureniya dlya optimizatsii proektirovaniya stroitel'stva skvazhin (Drilling parameters prediction for optimization of well construction planning), Collected papers “Bulatovskie chteniya”, Krasnodar, 2018, pp. 66–71.

4. Komkova L.P., Pereskokov K.A., Samsykin A.V., Modern isolation composition to control high-intensive fluid circulation loss (In Russ.), Neft'.Gaz.Novatsii, 2018, no. 6, pp. 57–58.

5. Galiev A.F., Samsykin A.V., Teoreticheskie aspekty razrabotki tsementno-polimernykh sostavov dlya bor'by s vysokointensivnymi pogloshcheniyami (Theoretical aspects of the development of cement-polymer compositions to combat high-intensity absorption), Collected papers “Prakticheskie aspekty neftepromyslovoy khimii” (Practical aspects of oilfield chemistry), Ufa, 2014, pp. 50–53.

6. Blaiszik B.J., Kramer S.L.B., Olugebefola S.C. et al., Self-healing polymers and composites, Annu. Rev. Mater. Res., 2010, V. 40, pp. 179–211.

The purpose of this work was to study the current issue of improving the structural strength and mechanical properties of grouting and insulating materials based on cements, including lightweight, used to prevent and eliminate absorption zones of different intensities. The objective of the research is to select promising polymer additives or fillers and study their impact on improving the durability of lightweight cement stone exposed to dynamic influences as a result of various technological operations in the drilling process. To solve this problem in the formulation of the plugging composition, a complex application in two aggregate states of a high-molecular polymer is proposed, which ensures the maintenance of tightness in the formed lightweight cement stone, as well as ensuring its integrity through the manifestation of the «self-healing effect». The authors constructed an experimental setup designed for laboratory studies of physical, mechanical and structural properties of samples of lightweight cement-foam grouting compositions. On the basis of the obtained results of experimental studies, formulations of lightweight plugging insulating compositions for eliminating high-intensity absorption of drilling mud were obtained. In addition, partially destroyed samples of lightweight cement-foam compositions containing a high-molecular polymer simultaneously in a hydrophobic and hydrophilic state revealed the ability to regenerate, the so-called «self-healing effect», which helps to restore the integrity and maintain the integrity of the cement stone in time under dynamic conditions.

Obtained results may be used both during eliminating absorption zones and in the process of cementing wells by means of lightweight grouting compositions.

References

1. Samsykin A.V., Yarmukhametov I.I., Samsykina A.V., Enhanced cement compositions for varied rate lost circulation control in drilling (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2012, no. 5, pp. 32–34.

2. Shaydullin V.A., Levchenko E.A., Valieva O.I., Akhmerov I.A., Selection of grouting compositions for water shut-off in low-permeability intervals (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 6, pp. 94–98.

3. Galeev S.R., Lind Yu.B., Khashper A.L. et al., Prognozirovanie parametrov bureniya dlya optimizatsii proektirovaniya stroitel'stva skvazhin (Drilling parameters prediction for optimization of well construction planning), Collected papers “Bulatovskie chteniya”, Krasnodar, 2018, pp. 66–71.

4. Komkova L.P., Pereskokov K.A., Samsykin A.V., Modern isolation composition to control high-intensive fluid circulation loss (In Russ.), Neft'.Gaz.Novatsii, 2018, no. 6, pp. 57–58.

5. Galiev A.F., Samsykin A.V., Teoreticheskie aspekty razrabotki tsementno-polimernykh sostavov dlya bor'by s vysokointensivnymi pogloshcheniyami (Theoretical aspects of the development of cement-polymer compositions to combat high-intensity absorption), Collected papers “Prakticheskie aspekty neftepromyslovoy khimii” (Practical aspects of oilfield chemistry), Ufa, 2014, pp. 50–53.

6. Blaiszik B.J., Kramer S.L.B., Olugebefola S.C. et al., Self-healing polymers and composites, Annu. Rev. Mater. Res., 2010, V. 40, pp. 179–211.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

05.03.2020
01.03.2020
25.02.2020