Логин:
Пароль:
Регистрация
Забыли свой пароль?

Automatic inhibitor dosing in a system of field pipelines

UDK: 622.692./4.004.54
DOI: 10.24887/0028-2448-2019-10-112-113
Key words: corrosion inhibitor, chemical dosing unit, corrosion inhibitor automatic feed control
Authors: A.S. Tulyakov (RN-Uvatneftegas LLC, RF, Tyumen), R.R. Shigapov (RN-Uvatneftegas LLC, RF, Tyumen)

The article describes the development of a method for a rational use of corrosion inhibitors, which enables to reduce fluid’s corrosive activity in field pipelines. The effectiveness of this method was achieved by developing and implementing an algorithm for automatically controlling corrosion inhibitor feed into field pipelines, depending on the flow rate of fluid from the well pads (oil treatment and pumping facilities, cluster pumping stations, etc.). Chemical dosing is also remotely controlled by an operator, which makes it possible to monitor the equipment remotely and to reduce labor costs for manually adjusting the amount of supplied chemicals. The problems arising during daily operation of field pipelines and oilfield equipment for dosing chemicals, that inspired the authors to look for solution, are briefly examined. While doing the job the authors were challenged to keep implementation costs as low as possible and not to jeopardize the reliability and integrity of field pipelines. As a result, this initiative was implemented and proved effective in the field pipelines inhibition and corrosion monitoring system in the Kalchinskoye field operated by RN-Uvatneftegas LLC. The article contains the formulas used in the algorithm for field pipelines inhibition automated control system. To prove its feasibility, this algorithm was monitored for two years, the expectations were justified. As a result, the system’s economic efficiency due to saving corrosion inhibitor was proved.

References

1. RD 39-0147103-324-88, Metodika opredeleniya stepeni zashchity staley ingibitorami ot korrozionno-mekhanicheskogo razrusheniya v serovodorodsoderzhashchikh mineralizovannykh sredakh (Methodology for determining the degree of protection of steel by inhibitors from corrosion-mechanical destruction in hydrogen sulfide-containing mineralized media), Ufa: Publ. of VNIISPTneft', 1989.

2. Azhogin F.F., Korrozionnoe rastreskivanie i zashchita vysokoprochnykh staley (Corrosion cracking and protection of high strength steels), Moscow: Metallyrgiya Publ., 1974, 256 p.

3. Certificate of authorship no. 1810498, 5 E 21 V 43/00, Sposob dozirovaniya reagenta v skvazhinu (Method for metering of chemical agent injected into well), Authors: Safin V.A., Shinkarev S.A., Gaynutdinov A.G. et al.

4. Certificate of authorship no. 1578317, 5 E 21 V 43/00, Ustroystvo dlya dozirovannoy podachi khimicheskogo reagenta v skvazhinu (Device for dosed supply of chemical reagent into the well), Author: Cheryev O.M.

5. Petrov I.V., Programmiruemye kontrollery. Standartnye yazyki i priemy prikladnogo proektirovaniya (Programmable controllers. Standard languages and applied design techniques), Moscow: Solon-Press Publ., 2004, 256 p.

6. Brents A.D. et al., Avtomatizirovannye sistemy upravleniya v neftyanoy i gazovoy promyshlennosti (Automated control systems in the oil and gas industry), Moscow: Nedra Publ., 1982, 233 p.

The article describes the development of a method for a rational use of corrosion inhibitors, which enables to reduce fluid’s corrosive activity in field pipelines. The effectiveness of this method was achieved by developing and implementing an algorithm for automatically controlling corrosion inhibitor feed into field pipelines, depending on the flow rate of fluid from the well pads (oil treatment and pumping facilities, cluster pumping stations, etc.). Chemical dosing is also remotely controlled by an operator, which makes it possible to monitor the equipment remotely and to reduce labor costs for manually adjusting the amount of supplied chemicals. The problems arising during daily operation of field pipelines and oilfield equipment for dosing chemicals, that inspired the authors to look for solution, are briefly examined. While doing the job the authors were challenged to keep implementation costs as low as possible and not to jeopardize the reliability and integrity of field pipelines. As a result, this initiative was implemented and proved effective in the field pipelines inhibition and corrosion monitoring system in the Kalchinskoye field operated by RN-Uvatneftegas LLC. The article contains the formulas used in the algorithm for field pipelines inhibition automated control system. To prove its feasibility, this algorithm was monitored for two years, the expectations were justified. As a result, the system’s economic efficiency due to saving corrosion inhibitor was proved.

References

1. RD 39-0147103-324-88, Metodika opredeleniya stepeni zashchity staley ingibitorami ot korrozionno-mekhanicheskogo razrusheniya v serovodorodsoderzhashchikh mineralizovannykh sredakh (Methodology for determining the degree of protection of steel by inhibitors from corrosion-mechanical destruction in hydrogen sulfide-containing mineralized media), Ufa: Publ. of VNIISPTneft', 1989.

2. Azhogin F.F., Korrozionnoe rastreskivanie i zashchita vysokoprochnykh staley (Corrosion cracking and protection of high strength steels), Moscow: Metallyrgiya Publ., 1974, 256 p.

3. Certificate of authorship no. 1810498, 5 E 21 V 43/00, Sposob dozirovaniya reagenta v skvazhinu (Method for metering of chemical agent injected into well), Authors: Safin V.A., Shinkarev S.A., Gaynutdinov A.G. et al.

4. Certificate of authorship no. 1578317, 5 E 21 V 43/00, Ustroystvo dlya dozirovannoy podachi khimicheskogo reagenta v skvazhinu (Device for dosed supply of chemical reagent into the well), Author: Cheryev O.M.

5. Petrov I.V., Programmiruemye kontrollery. Standartnye yazyki i priemy prikladnogo proektirovaniya (Programmable controllers. Standard languages and applied design techniques), Moscow: Solon-Press Publ., 2004, 256 p.

6. Brents A.D. et al., Avtomatizirovannye sistemy upravleniya v neftyanoy i gazovoy promyshlennosti (Automated control systems in the oil and gas industry), Moscow: Nedra Publ., 1982, 233 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

22.05.2020
15.05.2020
15.05.2020