Логин:
Пароль:
Регистрация
Забыли свой пароль?

Some aspects of heat-insulating materials application on systems of oil fields steam pipelines

UDK: 622.276.65.05
DOI: 10.24887/0028-2448-2019-10-87-89
Key words: energy efficiency of formation heating, minimizing heat losses, high-viscosity oil fields, thermal insulation materials
Authors: O.Yu. Elagina (Gubkin University, RF, Moscow), V.N. Ageevа (Gubkin University, RF, Moscow), A.G. Buklakov (Gubkin University, RF, Moscow)

Energy efficiency of formation heating at high-viscosity oil fields under development using steam injection is largely determined by minimizing heat losses during his transportation from the steam generator up to the wellhead. The use of superheated steam with temperatures in the range of 250–300 °C places increased demands on the thermal insulation material and makes the issue of its choice relevant. The most common and relatively cheap material used for insulating steam lines is glass staple fiber. However, its use has a number of limitations.

The article presents an analysis of the effectiveness of the use of staple fiber in various sections of steam pipelines. Evaluation of the effectiveness of thermal protection of steam pipelines of the steam injection system in the well was carried out by thermal imaging. The purpose of the measurements was to assess the reduction in the temperature of the steam line, depending on the distance of the injection wells from the place of steam generation and the conditions of its transportation. The analysis of the obtained data shows that the maximum decrease in the steam temperature occurs in the areas from the steam generation unit to the output combs. Further advance of steam on stationary steam pipelines with industrial thermal insulation practically does not give temperature decrease. It follows that in order to reduce heat loss in sections of steam pipelines with a temperature of 250–280 °С, it is necessary to use materials with higher thermal insulation properties than staple fiber. The selection of such materials was carried out in the work. Based on the data on the value of the thermal conductivity coefficient of the considered types of thermal insulation, an approximate calculation of the required thickness of the thermal insulation layer for the steam pipe with a diameter of 86 mm was carried out. To assess the possibility of ensuring the economic efficiency of staple fiber replacement, the calculation of thermal loss reduction for various thermal insulation materials was performed. The conducted researches have shown possibility of application for thermal insulation of steam pipelines of such materials as basalt wool, foam-glass, aerogel, aluminosilicate fiber, silica materials which big advantage is possibility of production from them of covers for shaped elements of pipelines on which surface there are the greatest losses of heat.

References

1. Bazukova E.R., Van'kov Yu.V., The heat losses of steam lines in the deterioration of insulation properties in process of using (In Russ.), Inzhenernyy vestnik Dona, 2015, no. 3, URL: http://www.ivdon.ru/uploads/article/pdf/IVD_195_bazukova_van­kov.pdf_884c547c9d.pdf

2. Gutnikov S.I., Lazoryak B.I., Seleznev A.N., Steklyannye volokna (Glass fibers), Moscow: Publ. of MSU, 2010, 53 p.

Energy efficiency of formation heating at high-viscosity oil fields under development using steam injection is largely determined by minimizing heat losses during his transportation from the steam generator up to the wellhead. The use of superheated steam with temperatures in the range of 250–300 °C places increased demands on the thermal insulation material and makes the issue of its choice relevant. The most common and relatively cheap material used for insulating steam lines is glass staple fiber. However, its use has a number of limitations.

The article presents an analysis of the effectiveness of the use of staple fiber in various sections of steam pipelines. Evaluation of the effectiveness of thermal protection of steam pipelines of the steam injection system in the well was carried out by thermal imaging. The purpose of the measurements was to assess the reduction in the temperature of the steam line, depending on the distance of the injection wells from the place of steam generation and the conditions of its transportation. The analysis of the obtained data shows that the maximum decrease in the steam temperature occurs in the areas from the steam generation unit to the output combs. Further advance of steam on stationary steam pipelines with industrial thermal insulation practically does not give temperature decrease. It follows that in order to reduce heat loss in sections of steam pipelines with a temperature of 250–280 °С, it is necessary to use materials with higher thermal insulation properties than staple fiber. The selection of such materials was carried out in the work. Based on the data on the value of the thermal conductivity coefficient of the considered types of thermal insulation, an approximate calculation of the required thickness of the thermal insulation layer for the steam pipe with a diameter of 86 mm was carried out. To assess the possibility of ensuring the economic efficiency of staple fiber replacement, the calculation of thermal loss reduction for various thermal insulation materials was performed. The conducted researches have shown possibility of application for thermal insulation of steam pipelines of such materials as basalt wool, foam-glass, aerogel, aluminosilicate fiber, silica materials which big advantage is possibility of production from them of covers for shaped elements of pipelines on which surface there are the greatest losses of heat.

References

1. Bazukova E.R., Van'kov Yu.V., The heat losses of steam lines in the deterioration of insulation properties in process of using (In Russ.), Inzhenernyy vestnik Dona, 2015, no. 3, URL: http://www.ivdon.ru/uploads/article/pdf/IVD_195_bazukova_van­kov.pdf_884c547c9d.pdf

2. Gutnikov S.I., Lazoryak B.I., Seleznev A.N., Steklyannye volokna (Glass fibers), Moscow: Publ. of MSU, 2010, 53 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

09.07.2020
06.07.2020
29.06.2020