Логин:
Пароль:
Регистрация
Забыли свой пароль?

Assessment of results of hydraulic fracturing on the basis of microseismic monitoring, geological and production data comprehensive analysis

UDK: 622.276.66
DOI: 10.24887/0028-2448-2019-8-122-125
Key words: terrigenous reservoir, oil flow rates, correlation analysis, fracture direction, field information
Authors: A.V. Rastegaev (Perm National Research Polytechnic University, RF, Perm), I.A. Chernykh (Perm National Research Polytechnic University, RF, Perm), I.N. Ponomareva (Perm National Research Polytechnic University, RF, Perm), D.A. Martyushev (Perm National Research Polytechnic University, RF, Perm)

Hydraulic fracturing is one of the most common technologies aimed at increasing the productivity of wells. A detailed analysis of the experience of conducting hydraulic fracturing accumulated for a particular region will help to develop approaches to the successful implementation of the method. In particular, determining size and direction of the fracture is of great interest for the theory and practice of oil production. One of the modern methods to determine the spatial location of a hydraulic fracture and its dimensions is microseismic monitoring. However, not every hydraulic fracturing operation can be accompanied by microseismic monitoring. Thus, in some cases, the application of this control method is hampered by the presence of adverse seismic and geological conditions that impede the passage of waves. It is also necessary to take into account the rise in the cost of the fracturing procedure when it is accompanied by microseismic monitoring. In this regard, it seems relevant to develop a method that allows, according to the integrated processing of geological field material, to solve this problem.

The article presents the results of the data analysis on wells of the Perm region, the hydraulic fracturing of which was accompanied by high-quality microseismic monitoring. For the same wells hydrodynamic research materials under unsteady conditions and production data for 12 months before and after hydraulic fracturing were attracted. A comprehensive analysis of these materials also made it possible to obtain crack parameters with a high degree of convergence with the results of microseismic monitoring. Thus, the article developed an approach to assess the results of hydraulic fracturing based on the use of data from field and hydrodynamic studies, which showed high convergence with the results of microseismic monitoring.

References

1. Voevodkin V.L., Aleroev A.A., Baldina T.R. et al., The evolution of the hydraulic fracturing technology on the fields of Perm region (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2018, no. 11, pp. 108–113.

2. Cherepanov S.S., Chumakov G.N., Ponomareva I.N., Results of applying acidic hydraulic fracturing with proppant in the Tournaisian-Famennian reserves at the Ozernoe field (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, no. 16, pp. 70–76.

3. Votinov A.S., Drozdov S.A., Malysheva V.L., Mordvinov V.A., Recovery and increase of the productivity of wells of Kashirskiy and Podolskiy reservoirs of the certain Perm region oil field (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2018, V. 18, no. 2, pp. 140–148, DOI: 10.15593/2224-9923/2018.4.4.

4. Aleksandrov S.I., Gogonenkov G.N., Pasynkov A.G., Passive seismic monitoring as a tool of hydrofrac geometry determination (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2007, no. 3, pp. 51–53.

5. Barkhatov E.A., Yarkeeva N.R., The efficiency of multizone hydraulic fracturing in horizontal well (In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2017, V. 328, no. 10, pp. 50–58.

6. Jianming He, Chong Lin, Xiao Li et al., Initiation, propagation, closure and morphology of hydraulic fracturing in sandstone cores, Fuel, 2017, V. 208, pp. 65–70, DOI: 10.1016/j.fuel.2017.06.080..

7. Galkin V.I., Koltyrin A.N., Kazantsev A.S. et al., Development of a statistical model aimed at prediction of efficiency of proppant hydraulic fracturing of a formation, based on a reservoir geological-technological parameters, for Vereiskian carbonate oil- and gas-bearing complex (In Russ.), Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2017, no. 3, pp. 48–54.

8. Galkin V.I., Ponomareva I.N., Koltyrin A.N., Development of probabilistic and statistical models for evaluation of the effectiveness of proppant hydraulic fracturing (on example of the Tl-Bb reservoir of the Batyrbayskoe field) (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2018, V. 17, no. 1, pp. 37–49.

9. Tarek A. Ganata, Meftah Hrairi, A new choke correlation to predict flow rate of artificially flowing wells, Journal of Petroleum Science and Engineering, 2018, V. 171, pp. 1378–1389.

10. Nurgaliev R.Z., Mukhliev I.R., Sagidullin L.R. et al., Peculiarities of wells interference influence on the efficiency of hydraulic and gaz-dynamic fracturing of a formation (In Russ.), Neftepromyslovoe delo, 2018, no. 3, pp. 29–34.

11. Mukhametshin V.V., Rationale for trends in increasing oil reserves depletion in Western Siberia cretaceous deposits based on targets identification (In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2018, V. 329, no. 5, pp. 117–124.

12. Mirzadzhanzade A.Kh., Tekhnologiya i tekhnika dobychi nefti (Technology and oil production technology), Moscow: Nedra Publ., 1986, 382 p.

13. Chornyy A.V., Kozhemyakina I.A., Churanova N.Yu. et al., Analysis of wells interaction based on algorithms of complexing geological and field data (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 1, pp. 36–39.

14. Chekalyuk E.B., Osnovy p'ezometrii zalezhey nefti i gaza (Basics of piezometry of oil and gas deposits), Kiev: Gosnauchtekhizdat Ukrainy Publ., 1961, 286 p.

Hydraulic fracturing is one of the most common technologies aimed at increasing the productivity of wells. A detailed analysis of the experience of conducting hydraulic fracturing accumulated for a particular region will help to develop approaches to the successful implementation of the method. In particular, determining size and direction of the fracture is of great interest for the theory and practice of oil production. One of the modern methods to determine the spatial location of a hydraulic fracture and its dimensions is microseismic monitoring. However, not every hydraulic fracturing operation can be accompanied by microseismic monitoring. Thus, in some cases, the application of this control method is hampered by the presence of adverse seismic and geological conditions that impede the passage of waves. It is also necessary to take into account the rise in the cost of the fracturing procedure when it is accompanied by microseismic monitoring. In this regard, it seems relevant to develop a method that allows, according to the integrated processing of geological field material, to solve this problem.

The article presents the results of the data analysis on wells of the Perm region, the hydraulic fracturing of which was accompanied by high-quality microseismic monitoring. For the same wells hydrodynamic research materials under unsteady conditions and production data for 12 months before and after hydraulic fracturing were attracted. A comprehensive analysis of these materials also made it possible to obtain crack parameters with a high degree of convergence with the results of microseismic monitoring. Thus, the article developed an approach to assess the results of hydraulic fracturing based on the use of data from field and hydrodynamic studies, which showed high convergence with the results of microseismic monitoring.

References

1. Voevodkin V.L., Aleroev A.A., Baldina T.R. et al., The evolution of the hydraulic fracturing technology on the fields of Perm region (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2018, no. 11, pp. 108–113.

2. Cherepanov S.S., Chumakov G.N., Ponomareva I.N., Results of applying acidic hydraulic fracturing with proppant in the Tournaisian-Famennian reserves at the Ozernoe field (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, no. 16, pp. 70–76.

3. Votinov A.S., Drozdov S.A., Malysheva V.L., Mordvinov V.A., Recovery and increase of the productivity of wells of Kashirskiy and Podolskiy reservoirs of the certain Perm region oil field (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2018, V. 18, no. 2, pp. 140–148, DOI: 10.15593/2224-9923/2018.4.4.

4. Aleksandrov S.I., Gogonenkov G.N., Pasynkov A.G., Passive seismic monitoring as a tool of hydrofrac geometry determination (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2007, no. 3, pp. 51–53.

5. Barkhatov E.A., Yarkeeva N.R., The efficiency of multizone hydraulic fracturing in horizontal well (In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2017, V. 328, no. 10, pp. 50–58.

6. Jianming He, Chong Lin, Xiao Li et al., Initiation, propagation, closure and morphology of hydraulic fracturing in sandstone cores, Fuel, 2017, V. 208, pp. 65–70, DOI: 10.1016/j.fuel.2017.06.080..

7. Galkin V.I., Koltyrin A.N., Kazantsev A.S. et al., Development of a statistical model aimed at prediction of efficiency of proppant hydraulic fracturing of a formation, based on a reservoir geological-technological parameters, for Vereiskian carbonate oil- and gas-bearing complex (In Russ.), Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 2017, no. 3, pp. 48–54.

8. Galkin V.I., Ponomareva I.N., Koltyrin A.N., Development of probabilistic and statistical models for evaluation of the effectiveness of proppant hydraulic fracturing (on example of the Tl-Bb reservoir of the Batyrbayskoe field) (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2018, V. 17, no. 1, pp. 37–49.

9. Tarek A. Ganata, Meftah Hrairi, A new choke correlation to predict flow rate of artificially flowing wells, Journal of Petroleum Science and Engineering, 2018, V. 171, pp. 1378–1389.

10. Nurgaliev R.Z., Mukhliev I.R., Sagidullin L.R. et al., Peculiarities of wells interference influence on the efficiency of hydraulic and gaz-dynamic fracturing of a formation (In Russ.), Neftepromyslovoe delo, 2018, no. 3, pp. 29–34.

11. Mukhametshin V.V., Rationale for trends in increasing oil reserves depletion in Western Siberia cretaceous deposits based on targets identification (In Russ.), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2018, V. 329, no. 5, pp. 117–124.

12. Mirzadzhanzade A.Kh., Tekhnologiya i tekhnika dobychi nefti (Technology and oil production technology), Moscow: Nedra Publ., 1986, 382 p.

13. Chornyy A.V., Kozhemyakina I.A., Churanova N.Yu. et al., Analysis of wells interaction based on algorithms of complexing geological and field data (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2019, no. 1, pp. 36–39.

14. Chekalyuk E.B., Osnovy p'ezometrii zalezhey nefti i gaza (Basics of piezometry of oil and gas deposits), Kiev: Gosnauchtekhizdat Ukrainy Publ., 1961, 286 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

13.11.2019
08.11.2019
30.10.2019