Логин:
Пароль:
Регистрация
Забыли свой пароль?

Improving the efficiency of improved oil recovery methods based on the consideration of the clay factor of productive layers

UDK: 551.31
DOI: 10.24887/0028-2448-2019-8-18-21
Key words: clay minerals, typing, intensification methods
Authors: V.A. Zholudeva (KogalymNIPIneft Branch of LUKOIL-Engineering LLC in Tyumen, RF, Tyumen), V.V. Kolpakov (KogalymNIPIneft Branch of LUKOIL-Engineering LLC in Tyumen, RF, Tyumen)

The paper reviewed the main physicochemical characteristics of certain types of clay minerals, the differences in which predetermine the differences in the complex of measures aimed at intensifying oil production. The object of research is terrigenous rocks of the Vasyugan suite (formation U1), characterized by polymineral clay cement, which includes kaolinite, chlorite, a group of hydromica minerals. Each of the selected minerals has different crystal chemical (ability to swell) and physicochemical characteristics (size of specific surface area, cation-exchange ability). According to the results of a comparative analysis of laboratory and special studies, it was found that rocks with a high content of kaolinite are characterized by low values of both specific surface size and cation exchange capacity, and rocks with a high content of hydromica group of minerals are characterized by high values of these values, which confirms the influence of the mineral and quantitative composition of clay cement on the physicochemical characteristics of rocks. Detailed lithological-technological typification of rocks was performed considering the described issues and the results of previous studies. Three types are distinguished. Each of them is characterized by a certain qualitative and quantitative composition, physicochemical features, and a complex of geological and technological measures, which are recommended to be applied at sites (in intervals) of distribution of a certain lithological-technological type, in order to intensify production. Thus, in the zones of distribution of rocks of type I, it is most effective to carry out activities using additives of various surfactants, or carbon dioxide. In the zones of development of rocks of type II, all existing types of geological and technological measures will be effective. In zones of type III rock distribution, it is possible to use chemical methods to intensify oil production.

References

1. Sokolov V.N., Microcosm of clay rocks (In Russ.), Sorosovskiy obrazovatel'nyy zhurnal, 1996, no. 3, pp. 56–64.

2. Kravchenko I.I., Babalyan G.A., Adsorbtsiya PAV v protsesse dobychi nefti (The adsorption of surfactants in the oil production), Moscow: Nedra Publ., 1971, 159 p.

3. Kolpakov V.V., Zholudeva V.A., Saetgaleev Ya.Kh., Efficiency enhancement of geological exploration and risks reduction of deposits development based on lithological-technological modeling of clay collectors of Yu1 formation of Kogalymsky region (In Russ.), Neftepromyslovoe delo, 2017, no. 10, pp. 9–13.

4. Sarkisyan S.G., Kotel'nikov D.D., Glinistye mineraly i problemy neftegazovoy geologii (Clay minerals and problems of oil and gas geology), Moscow: Nedra Publ., 1980, 232 p.

5. Bregg V.G., On the structure and properties of clays (In Russ.), Uspekhi fizicheskikh nauk, 1939, V. 26, pp. 1–20.

6. Shmyrina (Zholudeva) V.A., Morozov V.P., Morfogeneticheskie osobennosti glinistykh mineralov produktivnykh na neft' otlozheniy Kustovogo mestorozhdeniya (plasty BS111 i YuS11) (Morphogenetic features of clay minerals of oil-producing deposits of Kustovoye oilfield (BS111 and YuS11 layers)), Collected papers “Leningradskaya shkola litologii” (Leningrad School of Lithology), Proceedings of All-Russian Lithological Conference dedicated to the 100th anniversary of the birth of L.B. Rukhin, Part 2, St. Petersburg: Publ. of SPbSU, 2012, pp. 202–204.

The paper reviewed the main physicochemical characteristics of certain types of clay minerals, the differences in which predetermine the differences in the complex of measures aimed at intensifying oil production. The object of research is terrigenous rocks of the Vasyugan suite (formation U1), characterized by polymineral clay cement, which includes kaolinite, chlorite, a group of hydromica minerals. Each of the selected minerals has different crystal chemical (ability to swell) and physicochemical characteristics (size of specific surface area, cation-exchange ability). According to the results of a comparative analysis of laboratory and special studies, it was found that rocks with a high content of kaolinite are characterized by low values of both specific surface size and cation exchange capacity, and rocks with a high content of hydromica group of minerals are characterized by high values of these values, which confirms the influence of the mineral and quantitative composition of clay cement on the physicochemical characteristics of rocks. Detailed lithological-technological typification of rocks was performed considering the described issues and the results of previous studies. Three types are distinguished. Each of them is characterized by a certain qualitative and quantitative composition, physicochemical features, and a complex of geological and technological measures, which are recommended to be applied at sites (in intervals) of distribution of a certain lithological-technological type, in order to intensify production. Thus, in the zones of distribution of rocks of type I, it is most effective to carry out activities using additives of various surfactants, or carbon dioxide. In the zones of development of rocks of type II, all existing types of geological and technological measures will be effective. In zones of type III rock distribution, it is possible to use chemical methods to intensify oil production.

References

1. Sokolov V.N., Microcosm of clay rocks (In Russ.), Sorosovskiy obrazovatel'nyy zhurnal, 1996, no. 3, pp. 56–64.

2. Kravchenko I.I., Babalyan G.A., Adsorbtsiya PAV v protsesse dobychi nefti (The adsorption of surfactants in the oil production), Moscow: Nedra Publ., 1971, 159 p.

3. Kolpakov V.V., Zholudeva V.A., Saetgaleev Ya.Kh., Efficiency enhancement of geological exploration and risks reduction of deposits development based on lithological-technological modeling of clay collectors of Yu1 formation of Kogalymsky region (In Russ.), Neftepromyslovoe delo, 2017, no. 10, pp. 9–13.

4. Sarkisyan S.G., Kotel'nikov D.D., Glinistye mineraly i problemy neftegazovoy geologii (Clay minerals and problems of oil and gas geology), Moscow: Nedra Publ., 1980, 232 p.

5. Bregg V.G., On the structure and properties of clays (In Russ.), Uspekhi fizicheskikh nauk, 1939, V. 26, pp. 1–20.

6. Shmyrina (Zholudeva) V.A., Morozov V.P., Morfogeneticheskie osobennosti glinistykh mineralov produktivnykh na neft' otlozheniy Kustovogo mestorozhdeniya (plasty BS111 i YuS11) (Morphogenetic features of clay minerals of oil-producing deposits of Kustovoye oilfield (BS111 and YuS11 layers)), Collected papers “Leningradskaya shkola litologii” (Leningrad School of Lithology), Proceedings of All-Russian Lithological Conference dedicated to the 100th anniversary of the birth of L.B. Rukhin, Part 2, St. Petersburg: Publ. of SPbSU, 2012, pp. 202–204.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

13.11.2019
08.11.2019
30.10.2019