Creation of computer-aided system for equipment health assessment of main lines

UDK: 622.692.4-52
DOI: 10.24887/0028-2448-2019-3-116-121
Key words: main lines, bearing capacity, equipment health assessment, allowable operating pressure, software package
Authors: A.L. Nazimov (The Pipeline Transport Institute LLC, RF, Moscow), D.N. Lyalyushkin (The Pipeline Transport Institute LLC, RF, Moscow), A.M. Minnakhmedov (The Pipeline Transport Institute LLC, RF, Moscow), M.G. Romashin (The Pipeline Transport Institute LLC, RF, Moscow)

In recent years, the Russian Federation has paid increased attention to the industrial safety of hazardous production facilities. As a result, in the period 2013 to 2014, amendments were made to the Law on Industrial Safety of Hazardous Production Facilities No. 116-FZ of July 21, 1997 and a number of regulatory documents of Federal Environmental, Industrial and Nuclear Supervision Service of Russia (Rostechnadzor) were updated, such as “Safety rules for hazardous production facilities of main lines”, order of Rostechnadzor dated November 6, 2013, No. 520; “Recommendations for registration and storage of documentation confirming the safety of the maximum allowable operating pressure for hazardous production facilities of main lines”, Rostechnadzor order dated June 02, 2014, No. 233; “Rules for industrial safety evaluation”, the order of Rostechnadzor dated November 14, 2013, No. 538.

In operation of main lines in accordance with the requirements of federal legislation and regulatory documents of Rostechnadzor, an equipment health assessment procedure is carried out. One of the basic stages of the equipment health assessment is the rating of the allowable operating pressure (hereinafter referred to as AOP), with the significant amount of calculations. In this case, the data of engineering diagnostics, test results and information from the design, as-built and operational documentation are used.

The article describes the software system functionality developed by the Pipeline Transport Institute and used by Transneft Group to automate calculations, including unified calculation methods and reporting forms; ergonomic, intuitive interface to eliminate errors associated with the "human factor"; means of forming and maintaining a database of bearing capacities and allowable working pressures. Major aspects and suggestions for further development and improvement of the software package are considered.

References

1. URL: http://www.enbridge.com

2. URL: https://www.transcanada.com

3. URL: http://www.interpipeline.com

4. Lisin Yu.V., Neganov D.A., Sergaev A.A., Defining maximal working pressures for main pipelines in extended operation from the results of in-line diagnostics (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov = Science & Technologies: Oil and Oil Products Pipeline Transportation, 2016, no. 6, pp. 30–37.

5. Lisin Yu.V., Research of physical and chemical properties of steel for continuously operated pipelines and assessment of safe operational life (In Russ.), Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov= Science & Technologies: Oil and Oil Products Pipeline Transportation, 2015, no. 4(20), pp. 18–28.

6. Certificate of state registration of computer programs no. 2016619925 RF. Programma dlya avtomatizatsii raschetov po otsenke tekhnicheskogo sostoyaniya magistralʹnykh truboprovodov na sootvetstvie trebovaniyam normativno-tekhnicheskikh dokumentov (A program to automate calculations to assess the technical condition of trunk pipelines for compliance with the requirements of regulatory and technical documents), Authors: Chuzhinov S.N., Amerkhanov A.A., Ivanov A.A., Ramazanov A.N., Neganov D.A., Murashko M.G., Akulenok A.V., Minnakhmedov A.M., Lisin YU.V.


Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .