Логин:
Пароль:
Регистрация
Забыли свой пароль?

Identifying the best technology solutions to improve efficiency of MSHF in horizontal wells at the Priobskoye field

UDK: 622.276.66 СМ
DOI: 10.24887/0028-2448-2017-12-46-48
Key words: horizontal wells, multistage hydraulic fracturing (MSHF), pilot production project, hard-to-recover reserves
Authors: A.R. Listik, N.G. Popov (Gazprom Neft PJSC, RF, Saint-Petersburg), A.N. Sitnikov, R.N. Asmandiyarov, A.Yu. Sheremeev, R.Z. Zulkarniev (Gazpromneft NTC LLC, RF, Saint-Petersburg), D.Yu. Kolupaev, N.V. Chebykin (Gazpromneft-Khantos LLC, RF, Khanty-Mansiysk)

Each year, new wells are drilled in reservoirs with poorer properties, in particular low permeability and low reservoir saturation. A need has been arising to create technologies that would allow developing hard-to-recover reserves that cannot be economically produced by traditional methods. For this purpose, new technologies and engineering solutions have been applied; new high-tech horizontal wells with multistage hydraulic fracturing (MSHF HW) have been designed and drilled. Thanks to its design features, a MSHF HW may have several times larger drainage area and, respectively, productive potential. It can be easily explained keeping in mind that, unlike a regular directional well, a MSHF HW has an up to 1.5 km long horizontal part drilled trough the reservoir where up to 30 hydrofrac stages may be performed with different designs, different technologies and hydrofrac equipment, and the hydraulic fractures may be directed along and across the strike.

Productivity of a MSHF HW is affected by many parameters, and as the active well count will be changing dynamically it is very important to identify the best technology solutions to improve operations efficiency based on both theoretical calculations and actual production results.

As of early 2017, the most advanced MSHF HW technologies were tested at the Priobskoye field (Southern License Area). After the first year of operation of wells with different completion designs and MSHF technologies at about 50 pilot sites the leading technologies and engineering solutions have been identified that are proven to ensure the highest well productivity in terms of cumulative production

Each year, new wells are drilled in reservoirs with poorer properties, in particular low permeability and low reservoir saturation. A need has been arising to create technologies that would allow developing hard-to-recover reserves that cannot be economically produced by traditional methods. For this purpose, new technologies and engineering solutions have been applied; new high-tech horizontal wells with multistage hydraulic fracturing (MSHF HW) have been designed and drilled. Thanks to its design features, a MSHF HW may have several times larger drainage area and, respectively, productive potential. It can be easily explained keeping in mind that, unlike a regular directional well, a MSHF HW has an up to 1.5 km long horizontal part drilled trough the reservoir where up to 30 hydrofrac stages may be performed with different designs, different technologies and hydrofrac equipment, and the hydraulic fractures may be directed along and across the strike.

Productivity of a MSHF HW is affected by many parameters, and as the active well count will be changing dynamically it is very important to identify the best technology solutions to improve operations efficiency based on both theoretical calculations and actual production results.

As of early 2017, the most advanced MSHF HW technologies were tested at the Priobskoye field (Southern License Area). After the first year of operation of wells with different completion designs and MSHF technologies at about 50 pilot sites the leading technologies and engineering solutions have been identified that are proven to ensure the highest well productivity in terms of cumulative production


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

13.11.2019
08.11.2019
30.10.2019