Prospectives of elimination of environmental pollution by oil-contaminated wastes at oil production facilities

UDK: 504.064.47
DOI: 10.24887/0028-2448-2017-11-149-152
Key words: oil production, gas dehydration, environmental pollution, DCR-process, waste utilization, oil sludge, spent diatomite filter powder, spent silica-gel
Authors: T.P. Kosulina, D.G. Antoniadi, T.A. Litvinova, O.S. Тsokur (Kuban State Technological University, RF, Krasnodar)

The transfer of oily wastes to secondary raw materials is provided by a reagent method of oil sludge utilization according to the priority goals in science and technology – rational nature management. The aim of the article is to reduce environmental pollution in oil production and natural gas preparation by creating new technologies of hydrocarbon wastes utilization with the formation of recovery products by encapsulating chemical contaminants during the hydration of calcium oxide and the formation of insoluble silicates that increase the efficiency of the DCR process (Dispersion by chemical reaction with alkali earth metals oxides). To provide ecological safety to the product of utilization three components were used in the decontamination composition: calcium oxide, spent silica-containing sorbents – diatomite filter powder enriched with plant wax substances, and silica gel. Silica-containing sorbent promotes the formation of insoluble calcium silicates, reducing the solubility of the capsules of the product of utilization. Possessing the residual properties of the sorbent it adsorbs the heavy metals and hydrocarbons contained in the oil sludge. The process is carried out by successive mixing oily waste preliminarily heated up to the temperature of 80-85°C with oil and fat industry wastes at a ratio of 1: (0.1-0.3) by weight and quicklime with water in the amount of 62-91% оf wastes until the formation of a homogeneous hydrophobic loose fine powder. Joint utilization of oil sludge and spent silica gel that's the waste of the natural gas preparation unit for transport, ensures minimal migration of harmful substances into the environment from waste products which are suitable for use in construction, in particular, as a complex organomineral additive in expanded clay and activated mineral powder in asphalt concrete mixtures.

References

1. State report “On the state and protection of the environment of the Russian Federation in 2015”, Moscow: Publ. of RF Ministry of Natural Resources; NIA-Priroda, 2016, 639 p.

2. URL: https://reestr.extech.ru/docs/analytic/pnr/pnr_6.pdf.

3. Litvinova T.A., Ekologicheskie aspekty obezvrezhivaniya i utilizatsii uglevodorodsoderzhashchikh otkhodov neftegazovogo kompleksa (Environmental aspects of disposal and recycling of hydrocarbon containing wastes oil and gas industry): thesis of candidate of technical science, Krasnodar, 2011.

4. Litvinova T.A., Tsokur O.S., Kosulina T.P., Solution of the problem of oil-containing waste utilization with their involvement in resource cycle (In Russ.), Sovremennye problemy nauki i obrazovaniya, 2012, no. 6, p. 53.

5. Tsokur O.S., Litvinova T.A., Kosulina T.P., Primenenie nailuchshikh dostupnykh tekhnologiy dlya utilizatsii promyshlennykh otkhodov (The application of the best available technologies for the disposal of industrial waste), Proceedings of IV International Scientific Ecological Conference “Problemy rekul'tivatsii otkhodov byta, promyshlennogo i sel'skokhozyaystvennogo proizvodstva” (Problems of household, industrial and agricultural production waste reclamation), Krasnodar: Publ. of Kuban State Agrarian University, 2015, Part 1, pp. 728–732.

6. Mobil'nye avtomatizirovannye kompleksy (Mobile automated systems), URL: http://www.insteb.ru/articles/2.html.

7. Kosulina T.P., Antoniadi D.G., Tsokur O.S., Maksimovich V.G., Reducing the ecological hazards on the territory of oil deposites in Krasnodar region by utilization of oily waste using reagent method (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2015, no. 12, pp. 158–160.

8. Litvinova T.A., Vinnikova T.V., Kosulina T.P., On reagent method of oil-slimes neutralization (In Russ.), Ekologiya i promyshlennost' Rossii, 2009, no. 10, pp. 40–43.

9. Kosulina T.P., Kononenko E.A., Increasing environmental safety of product recycling oil sludg (In Russ.), Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2012, V. 78, URL: http://ej.kubagro.ru/2012/04/pdf/64.pdf.

10. Kosulina T.P., Tsokur O.S., Litvinova T.A., Use of detoxifying composition for utilization of oil sludge and spent sorbent ODM-2F (In Russ.), Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 2013, no, 3, pp. 77-84.

11. Tsokur O.S., Povyshenie resursosberezheniya utilizatsiey neftesoderzhashchikh otkhodov reagentnym sposobom s polucheniem ekologicheski bezopasnykh produktov (Increase of resource saving by utilization of oil-containing wastes by reagent method with obtaining environmentally safe products): thesis of candidate of technical science, Krasnodar, 2015.

12. Patent no. 2395466 RF, Method of decontaminating oily mud, Inventors: Kosulina T.P., Litvinova T.A.

13. Kosulina T.P., Al'varis Ya.A., Solntseva T.A., Research into oil and gas complex solid wastes and their usage as a secondary raw material. Part 1. The composition and structure of contaminants forming on the surface of silica gel in natural gas preparation for transport (In Russ.), Zashchita okruzhayushchey sredy v neftegazovom komplekse, 2008, no. 1, pp. 16–20.

14 Kosulina T.P., Solntseva T.A., Levashov A.S., Al'varis Ya.A., Research into oil and gas complex solid wastes and their usage as a secondary raw material. Part 3. About contaminants structure and danger class of exhausted silica gel – the waste of gas processing industry (In Russ.), Zashchita okruzhayushchey sredy v neftegazovom komplekse, 2009, no. 2, pp. 33–38.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .