Логин:
Пароль:
Регистрация
Забыли свой пароль?

Choice of method for submerged crossing construction

UDK: 621.644.074
DOI: 10.24887/0028-2448-2017-11-143-148
Key words: choice of submerged crossing construction method, directional drilling technology, underwater passage, main pipeline, emergency situation, technical and economic limitations
Authors: A.N. Sapsay (Transneft PJSC, RF, Moscow), Z.Z. Sharafutdinov, D.A. Shatalov, D.R. Vafin (The Pipeline Transport Institute LLC, RF, Moscow)

Underwater crossings of main pipelines belong to the most critical areas of the pipelines. Their performability must be considered from the perspective of the requirements of the provision and management of security, because damage with the loss of integrity may lead to serious environmental consequences.

Currently Transneft PJSC operates about 1400 of underwater crossings constructed by one of three methods: trench method, directional drilling, microtunnelling. In the construction of underwater crossing by trench method, special attention must be paid to the mutual influence of channel processes of water and an object underwater crossing in order to prevent deviations from the horizontal and vertical position. Critical deviations occur within weakly stable channels of water of object with intense bed processes, in which erosion of the floodplain and banks of hundreds of meters, and the erosion of the bottom – up to several meters per year. Method of the directional drilling has several advantages over the trench method of construction: shorter construction times, a weak influence of natural and anthropogenic impacts on the underwater passage, in cramped conditions, regardless of the time of year, comparable in some cases the cost of construction and installation works. Microtunnelling method should be used in difficult engineering-geological conditions. For example, the reliability of the underwater crossing with seismic activity up to 7 points on MSK-64 is provided by structural strength microtunnelling passage.

The article covers technical and economic aspects of construction of the pipeline route. Constraints are formulated methods of construction of underwater passages of main pipelines. Technological scheme for selecting a method of construction of main pipelines underwater passages is developed.

References

1. Makhutov N.A., Prochnost' i bezopasnost': fundamental'nye i prikladnye issledovaniya (Strength and safety: fundamental and applied research), Novosibirsk: Nauka Publ., 2008, 528 p.

2. Promyshlennaya bezopasnost' i nadezhnost' magistral'nykh truboprovodov (Industrial safety and reliability of main pipelines): edited by Vladimirov A.I., Kershenbaum V.Ya., Moscow: Publ. of National Institute of Oil and Gas, 2009, 696 p.

3. Sharafutdinov Z.Z., Parizher V.I., Sorokin D.N. et al., Stroitel'stvo perekhodov magistral'nykh truboprovodov cherez estestvennye i iskusstvennye prepyatstviya (Construction of crossings of trunk pipelines through natural and artificial obstacles), Novosibirsk: Nauka Publ., 2013, 339 p.

4. Borodavkin P.P., Berezin V.L., Shadrin O.B., Podvodnye truboprovody

(Underwater pipelines), Moscow: Nedra Publ., 1979, 415 p.

5. Ivantsov O.M., Construction of crossings of trunk pipelines through active tectonic faults (In Russ.), Zhurnal neftegazovogo stroitel'stva, 2013, no. 4, pp. 25–31.

6. Vafin D.R., Sapsay A.N., Shatalov D.A., Technical and economic limits to the application of the horizontal direction drilling method in the construction of underwater transitions of main pipelines (In Russ.), Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 2017, no. 7(3), pp. 66–73.

Underwater crossings of main pipelines belong to the most critical areas of the pipelines. Their performability must be considered from the perspective of the requirements of the provision and management of security, because damage with the loss of integrity may lead to serious environmental consequences.

Currently Transneft PJSC operates about 1400 of underwater crossings constructed by one of three methods: trench method, directional drilling, microtunnelling. In the construction of underwater crossing by trench method, special attention must be paid to the mutual influence of channel processes of water and an object underwater crossing in order to prevent deviations from the horizontal and vertical position. Critical deviations occur within weakly stable channels of water of object with intense bed processes, in which erosion of the floodplain and banks of hundreds of meters, and the erosion of the bottom – up to several meters per year. Method of the directional drilling has several advantages over the trench method of construction: shorter construction times, a weak influence of natural and anthropogenic impacts on the underwater passage, in cramped conditions, regardless of the time of year, comparable in some cases the cost of construction and installation works. Microtunnelling method should be used in difficult engineering-geological conditions. For example, the reliability of the underwater crossing with seismic activity up to 7 points on MSK-64 is provided by structural strength microtunnelling passage.

The article covers technical and economic aspects of construction of the pipeline route. Constraints are formulated methods of construction of underwater passages of main pipelines. Technological scheme for selecting a method of construction of main pipelines underwater passages is developed.

References

1. Makhutov N.A., Prochnost' i bezopasnost': fundamental'nye i prikladnye issledovaniya (Strength and safety: fundamental and applied research), Novosibirsk: Nauka Publ., 2008, 528 p.

2. Promyshlennaya bezopasnost' i nadezhnost' magistral'nykh truboprovodov (Industrial safety and reliability of main pipelines): edited by Vladimirov A.I., Kershenbaum V.Ya., Moscow: Publ. of National Institute of Oil and Gas, 2009, 696 p.

3. Sharafutdinov Z.Z., Parizher V.I., Sorokin D.N. et al., Stroitel'stvo perekhodov magistral'nykh truboprovodov cherez estestvennye i iskusstvennye prepyatstviya (Construction of crossings of trunk pipelines through natural and artificial obstacles), Novosibirsk: Nauka Publ., 2013, 339 p.

4. Borodavkin P.P., Berezin V.L., Shadrin O.B., Podvodnye truboprovody

(Underwater pipelines), Moscow: Nedra Publ., 1979, 415 p.

5. Ivantsov O.M., Construction of crossings of trunk pipelines through active tectonic faults (In Russ.), Zhurnal neftegazovogo stroitel'stva, 2013, no. 4, pp. 25–31.

6. Vafin D.R., Sapsay A.N., Shatalov D.A., Technical and economic limits to the application of the horizontal direction drilling method in the construction of underwater transitions of main pipelines (In Russ.), Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov, 2017, no. 7(3), pp. 66–73.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

02.12.2020
30.11.2020
19.11.2020