Логин:
Пароль:
Регистрация
Забыли свой пароль?

New technology of bottom water shut-off

UDK: 622.276.7:622.245.67 ©
DOI: 10.24887/0028-2448-2017-11-126-128
Key words: borehole, bottom water inflow, water shut-off works, paraffin, diesel fuel
Authors: R.S. Khisamov (Tatneft PJSC, Almetyevsk), G.S. Abdrakhmanov (TatNIPIneft, RF, Bugulma), R.R. Kadyrov (Oktyabrsky Branch of Ufa State Petroleum Technological University, RF, Oktyabrsky), V.V. Mukhametshin (Ufa State Petroleum Technological University, RF, Ufa)

A new bottom water shut-off method is proposed. It provides for automatic injection of the solution of paraffin in diesel fuel into excess water production zone as water cut increases. This results in the formation of a water barrier (or elimination of water breakthrough problems in the existing barrier) and thus reduction of water cut. This method involves providing wells with dual-channel wellhead assembly with two tubing strings run through it. One string is run down the hole to reach the aquifer interval; the other is placed in the oil-bearing zone and equipped with an ins ert pump and a beam unit. Oil and water zones are separated by a packer. Available water shut-off technologies, which imply injection of water shut-off materials directly into formation, do not provide sufficient efficiency in terms of duration of technological effect. As the formed water barrier is not large and water from the water-bearing zone flows quickly around it, water cut increases again.  Creation of extended water barrier requires significant costs, so water shut-off treatments become uneconomic.

In summary, application of the proposed method will help increase water shut-off treatments efficiency, and in case of water production thorough the existing water barrier, water breakthrough pathways will be automatically ‘healed’ by injection of paraffin in diesel fuel in to the water production zone without shutting down the well for remedial operations.

References

1. Kadyrov R.R., Remontno-izolyatsionnye raboty v skvazhinakh s ispol’zovaniem polimernykh materialov (Well isolation squeeze using polymeric materials), Kazan’: Fen Publ., 2007, 423 p.

2. Mukhametshin V.V., Andreev V.E., Dubinsky G.S., Sultanov Sh.Kh., Akhmetov R.T., The usage of principles of system geological-technological forecasting in the justification of the recovery methods, SOCAR Proceedings, 2016, no. 3, pp. 46–51.

3. Kadyrov R.R., Nizaev R.Kh., Yartiev A.F., Mukhametshin V.V., A novel water shut-off technique for horizontal wells at fields with hard-to-recover oil reserves (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 5, pp. 44–47.

4. Zeigman Yu.V., Mukhametshin V.Sh., Khafizov A.R., Kharina S.B., Prospects of application of multi-functional well killing fluids in carbonate reservoirs, SOCAR Proceedings, 2016, no. 3, pp. 33–39.

5. Zeygman Yu.V., Mukhametshin V.Sh., Khafizov A.R. et al., Peculiarities of selecting well-killng fluids composition for difficult conditions (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 1, pp. 66–69.

6. Patent no. 2451165 RF, MPK E 21 B 43/16, Method for restriction of brine water inflow to production well, Inventors: Khisamov R.S., Abdrakhmanov G.S., Nuriev I.A., Taipova V.A., Chepik S.K.

7. Patent no.  2620670 RF, MPK E 21 V 43/32, Method of limitation of produced water inflow to production well, Inventors: Abdrakhmanov G.S., Khisamov R.S., Kadyrov R.R., Khannanov M.T., Khasanova D.K.

8. Patent no. 2386795 RF, MPK E 21 V 43/16, Development method of oil field with water-oil zones, Inventors: Abdulmazitov R.G., Ramazanov R.G., Muzalevskaya N.V., Yakhina O.A., Timergalieva R.R.

9. Ibragimov N.G., Tronov V.P., Gus’kova I.A., Teoriya i praktika metodov bor’by s organicheskimi otlozheniyami na pozdney stadii razrabotki neftyanykh mestorozhdeniy (Theory and practice of methods of struggle with organic varnish in the late stage of development of oil fields), Moscow: Neftyanoe khozyaystvo Publ., 2010, 240 p.

A new bottom water shut-off method is proposed. It provides for automatic injection of the solution of paraffin in diesel fuel into excess water production zone as water cut increases. This results in the formation of a water barrier (or elimination of water breakthrough problems in the existing barrier) and thus reduction of water cut. This method involves providing wells with dual-channel wellhead assembly with two tubing strings run through it. One string is run down the hole to reach the aquifer interval; the other is placed in the oil-bearing zone and equipped with an ins ert pump and a beam unit. Oil and water zones are separated by a packer. Available water shut-off technologies, which imply injection of water shut-off materials directly into formation, do not provide sufficient efficiency in terms of duration of technological effect. As the formed water barrier is not large and water from the water-bearing zone flows quickly around it, water cut increases again.  Creation of extended water barrier requires significant costs, so water shut-off treatments become uneconomic.

In summary, application of the proposed method will help increase water shut-off treatments efficiency, and in case of water production thorough the existing water barrier, water breakthrough pathways will be automatically ‘healed’ by injection of paraffin in diesel fuel in to the water production zone without shutting down the well for remedial operations.

References

1. Kadyrov R.R., Remontno-izolyatsionnye raboty v skvazhinakh s ispol’zovaniem polimernykh materialov (Well isolation squeeze using polymeric materials), Kazan’: Fen Publ., 2007, 423 p.

2. Mukhametshin V.V., Andreev V.E., Dubinsky G.S., Sultanov Sh.Kh., Akhmetov R.T., The usage of principles of system geological-technological forecasting in the justification of the recovery methods, SOCAR Proceedings, 2016, no. 3, pp. 46–51.

3. Kadyrov R.R., Nizaev R.Kh., Yartiev A.F., Mukhametshin V.V., A novel water shut-off technique for horizontal wells at fields with hard-to-recover oil reserves (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 5, pp. 44–47.

4. Zeigman Yu.V., Mukhametshin V.Sh., Khafizov A.R., Kharina S.B., Prospects of application of multi-functional well killing fluids in carbonate reservoirs, SOCAR Proceedings, 2016, no. 3, pp. 33–39.

5. Zeygman Yu.V., Mukhametshin V.Sh., Khafizov A.R. et al., Peculiarities of selecting well-killng fluids composition for difficult conditions (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 1, pp. 66–69.

6. Patent no. 2451165 RF, MPK E 21 B 43/16, Method for restriction of brine water inflow to production well, Inventors: Khisamov R.S., Abdrakhmanov G.S., Nuriev I.A., Taipova V.A., Chepik S.K.

7. Patent no.  2620670 RF, MPK E 21 V 43/32, Method of limitation of produced water inflow to production well, Inventors: Abdrakhmanov G.S., Khisamov R.S., Kadyrov R.R., Khannanov M.T., Khasanova D.K.

8. Patent no. 2386795 RF, MPK E 21 V 43/16, Development method of oil field with water-oil zones, Inventors: Abdulmazitov R.G., Ramazanov R.G., Muzalevskaya N.V., Yakhina O.A., Timergalieva R.R.

9. Ibragimov N.G., Tronov V.P., Gus’kova I.A., Teoriya i praktika metodov bor’by s organicheskimi otlozheniyami na pozdney stadii razrabotki neftyanykh mestorozhdeniy (Theory and practice of methods of struggle with organic varnish in the late stage of development of oil fields), Moscow: Neftyanoe khozyaystvo Publ., 2010, 240 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

21.10.2020
21.10.2020
19.10.2020