:
:

?

Results of research of waterproofing composition on a core model of a layered heterogeneous formation

UDK: 622.276.6
DOI: 10.24887/0028-2448-2017-11-118-121
Key words: waterproofing composition, layered heterogeneous reservoir, leveling of the injectivity profile, redistribution of filtration flows, colmatation, three-layer reservoir model, oil displacement efficiency
Authors: E.A. Gladkikh, G.P. Khizhniak (Perm National Research Polytechnic University, RF, Perm)

A high differentiation of the permeability along the section of the formation is often the reason for premature watering of highly permeable interlayers. The filtration flow almost completely rushes into the impregnated interlayers, while the displacement of oil from the less permeable sections of the section slows down considerably or stops completely. The result is the loss of a significant number of mobile stocks and a low oil recovery factor. To solve this problem, technologies are used, which, depending on the purpose of the treated well, are referred to as equalization technologies of the injectivity profile or the isolation of water inflows. The essence of these technologies is the redistribution of filtration flows by disabling the water absorption intervals or arrival water by injection of grouting mortar, chemical reagents - gels, various colmatants, etc.

The article presents the results of filtration tests on the core of a waterproofing composition intended for processing production and injection wells that operate a layered heterogeneous reservoir. The waterproofing ability of the composition is based on the interaction of the reagent with highly mineralized solutions of calcium or magnesium chlorides with the formation of sediment in the pore space and its colmatation. Due to the good mobility, the composition first penetrates into the most permeable watered layer, turns it off and then penetrates into the less permeable layer. The compatibility of the composition with the oil makes it possible to treat the well with a single filter. Filtration tests of the waterproofing composition were performed using three-layer core models simulating a layered heterogeneous formation for the conditions of the producing and injection wells. Studies have shown the high efficiency of the composition for the redistribution of filtration flows, especially in conditions of the injection well. The use of the composition led to an additional displacement of oil, the increase in the displacement coefficient for the formation models was 0.25-0.30.

References

1. Stroganov M.A., Technologies for conformance control of injection wells with the use of organosilicon backfill materials of the AKOR group (In Russ.), Neft. Gaz. Novatsii, 2016, no. 4, pp. 6973.

2. Abilkhairov D.T., Almukhametova E.M., Vladimirov I.V., Results of applying new technology injectivity profile alignment of Gellan as agent plugging (In Russ.), Neftegazovoe delo, 2017, V. 15, no. 1, pp. 6569.

3. Khasanov I.M., The results of conformance control technologies application at the deposits of Varyeganneftegaz JSC (In Russ.), Neft. Gaz. Novatsii, 2015, no. 7, pp. 2833.

4. Usov S.V., Ten O.P., Ryabokon S.A. et al., Conformance control and water shut-off using gelling agents (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1991, no. 7, pp. 4142.

5. Shishlov A.S., Usmanov R.Kh., Azamatov M.A., Kudlaeva N.V., Straightening the injectivity and fluid profile methods based on polymer systems treatment (In Russ.), Georesursy = Georesources, 2010, no. 1(33), pp. 27-30.

6. Khizhnyak G.P., Amirov A.M., Gladkikh E.A. et al., Efficiency of application of water-gas mixtures used to increase oil recovery and rearrange fluid flow (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2016, V. 15, no. 18, pp. 4252.

7. Khizhnyak G.P., Amirov A.M., Gladkikh E.A., WAG injection simulation in layered non-uniform reservoir (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 6, pp. 104107.

8. Khizhnyak G.P., Balueva N.Yu., Mordvinov V.A., Yushkov I.R., Laboratory studies results of polymer oil displacement (In Russ.), Vestnik PGTU. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2006, V. 5, no. 1, pp. 122125.

9. Khizhnyak G.P., Raspopov A.V., Mordvinov V.A., Yushkov I.R., Research results for the determination of oil displacement efficiency using biopolymers bp-92 (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2006, V. 5, no. 1, pp. 126131.

10. Borkhovich S.Yu., Kholmogorova D.K., Vasileva E.A., Yatskovskaya A.S., Termopolymeric techniques of development of complex structure fields with viscous and high-viscosity oil in carbon-bearing reservoirs (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2012, V. 11, no. 2, pp. 95104.

11. Mordvinov V.A., Poplygin V.V., Poplygina I.S., Methods of polymer flooding of high-viscosity oil pools (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2015, V. 14, no. 14, pp. 3951.

12. Vezhnin S.A., Nechaev V.K., Application of plasma pulse exposure technology to injectivity profile alignment (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 5, pp. 9495.

A high differentiation of the permeability along the section of the formation is often the reason for premature watering of highly permeable interlayers. The filtration flow almost completely rushes into the impregnated interlayers, while the displacement of oil from the less permeable sections of the section slows down considerably or stops completely. The result is the loss of a significant number of mobile stocks and a low oil recovery factor. To solve this problem, technologies are used, which, depending on the purpose of the treated well, are referred to as equalization technologies of the injectivity profile or the isolation of water inflows. The essence of these technologies is the redistribution of filtration flows by disabling the water absorption intervals or arrival water by injection of grouting mortar, chemical reagents - gels, various colmatants, etc.

The article presents the results of filtration tests on the core of a waterproofing composition intended for processing production and injection wells that operate a layered heterogeneous reservoir. The waterproofing ability of the composition is based on the interaction of the reagent with highly mineralized solutions of calcium or magnesium chlorides with the formation of sediment in the pore space and its colmatation. Due to the good mobility, the composition first penetrates into the most permeable watered layer, turns it off and then penetrates into the less permeable layer. The compatibility of the composition with the oil makes it possible to treat the well with a single filter. Filtration tests of the waterproofing composition were performed using three-layer core models simulating a layered heterogeneous formation for the conditions of the producing and injection wells. Studies have shown the high efficiency of the composition for the redistribution of filtration flows, especially in conditions of the injection well. The use of the composition led to an additional displacement of oil, the increase in the displacement coefficient for the formation models was 0.25-0.30.

References

1. Stroganov M.A., Technologies for conformance control of injection wells with the use of organosilicon backfill materials of the AKOR group (In Russ.), Neft. Gaz. Novatsii, 2016, no. 4, pp. 6973.

2. Abilkhairov D.T., Almukhametova E.M., Vladimirov I.V., Results of applying new technology injectivity profile alignment of Gellan as agent plugging (In Russ.), Neftegazovoe delo, 2017, V. 15, no. 1, pp. 6569.

3. Khasanov I.M., The results of conformance control technologies application at the deposits of Varyeganneftegaz JSC (In Russ.), Neft. Gaz. Novatsii, 2015, no. 7, pp. 2833.

4. Usov S.V., Ten O.P., Ryabokon S.A. et al., Conformance control and water shut-off using gelling agents (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 1991, no. 7, pp. 4142.

5. Shishlov A.S., Usmanov R.Kh., Azamatov M.A., Kudlaeva N.V., Straightening the injectivity and fluid profile methods based on polymer systems treatment (In Russ.), Georesursy = Georesources, 2010, no. 1(33), pp. 27-30.

6. Khizhnyak G.P., Amirov A.M., Gladkikh E.A. et al., Efficiency of application of water-gas mixtures used to increase oil recovery and rearrange fluid flow (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2016, V. 15, no. 18, pp. 4252.

7. Khizhnyak G.P., Amirov A.M., Gladkikh E.A., WAG injection simulation in layered non-uniform reservoir (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 6, pp. 104107.

8. Khizhnyak G.P., Balueva N.Yu., Mordvinov V.A., Yushkov I.R., Laboratory studies results of polymer oil displacement (In Russ.), Vestnik PGTU. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2006, V. 5, no. 1, pp. 122125.

9. Khizhnyak G.P., Raspopov A.V., Mordvinov V.A., Yushkov I.R., Research results for the determination of oil displacement efficiency using biopolymers bp-92 (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2006, V. 5, no. 1, pp. 126131.

10. Borkhovich S.Yu., Kholmogorova D.K., Vasileva E.A., Yatskovskaya A.S., Termopolymeric techniques of development of complex structure fields with viscous and high-viscosity oil in carbon-bearing reservoirs (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2012, V. 11, no. 2, pp. 95104.

11. Mordvinov V.A., Poplygin V.V., Poplygina I.S., Methods of polymer flooding of high-viscosity oil pools (In Russ.), Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Perm Journal of Petroleum and Mining Engineering, 2015, V. 14, no. 14, pp. 3951.

12. Vezhnin S.A., Nechaev V.K., Application of plasma pulse exposure technology to injectivity profile alignment (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2010, no. 5, pp. 9495.


Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

  Google play

Press Releases

19.10.2020
15.10.2020
10.10.2020