Логин:
Пароль:
Регистрация
Забыли свой пароль?

New approach to selection of pumping equipment and the mode of its operation in the wells under conditions of sand and proppant sloughing

UDK: 622.276.53.054.23:621.68
DOI: 10.24887/0028-2448-2017-11-52-55
Key words: sand and proppant control, mean time between failures, electric submersible pump (ESP) unit, operation of complicated wells
Authors: S.B. Yakimov (Rosneft Oil Company, RF, Moscow), V.N. Ivanovskiy, A.A. Sabirov, A.V. Bulat (Gubkin Russian State University of Oil and Gas (National Research University), RF, Moscow)

Conventional methods of sand control foresee placement of gravel-packed filters in the bottom hole, stabilization of producing formation with chemical compounds, application of erosion – resistant electric submersible pump (ESP) and sucker rod pumping (SRP) units U and installation of filters on their inlets or particles separators. However, all of these methods, in some circumstances fail to resolve completely the problem of submersible equipment protection or ensure extension of mean-time-between failures. Moreover, application of these methods is scarcely may be justified fr om the standpoint of economy. In particular, acute is the problem of setting the mode of wells’ completion after hydraulic fracturing operations to reduce the probability of ESP and SRP units failures. The authors propose to apply the method based on mathematic simulation of potential ingress of particles with pre-determined density and mesh-size in the inlet of submersible pump. The main field of application of the proposed method relates to the wells with low-viscosity fluid’s flow rate below 80 m3/day. The products of such wells contain relatively coarse sand fractions. Considering given conditions, we may reduce the risks of equipment failure upon production process stabilization after completion of well workover by way of setting pump delivery rate below calculated critical flow rate, wh ere the sand of certain coarse grade starts getting to the pump suction. Reduction of pump delivery rate may be attained with the use variable speed controller or temporary operation of equipment in periodic mode. Another area of this method application may include reduced probability of proppant’s suction into the pump upon bringing the wells on to stable production after completion of hydraulic fracturing operations. The method allows planning the parameters of setting operational mode of wells with minimized risk of sand clogging or early wear of submersible equipment, as well as defining the necessity of installation of sand preventers. Commercial application of the proposed method has been already commenced in Rosneft Oil Company.

References

1. Yakimov S.B., Kosarev I.A., Studying of screen filters efficiency used to protect electric submersible pumps in case of big amount of proppant flowback (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2013, no. 6, pp. 29–32.

2. Yakimov S.B., Pushkarev A.V., Vetokhin E.G., Podkorytov S.M., Some techniques of increasing the time of de-sanders’ effective operation to protect electric centrifugal pumps from sand at Samotlor field (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2015, no. 6, pp. 55–60.

3. Yakimov S.B., Some aspects of choosing technology providing protection of underground equipment from sand with account of dynamics of the sand removal while putting wells into operation at Samotlor oil field (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2013, no. 6, pp. 81–89.

4. Yakimov S.B., Shportko A.A., Sabirov A.A., Bulat A.V., The influence of concentration of abrasive particles in the produced fluid to the reliability of electric centrifugal submersible pumps (In Russ.), Territoriya “NEFTEGAZ”, 2017, no. 6, pp. 50–53.

5. Yakimov S.B., The index of aggressiveness of the rentrained solids at TNK-BP fields in Western Siberia (In Russ.), Neftepromyslovoe delo, 2008, no. 9, pp. 33–38.

6. Ivanovskiy V.N., Sabirov A.A., Bulat A.V. et al., Preliminary results of solids separator pilot testing (In Russ.), Territoriya “NEFTEGAZ”, 2012, no. 11, pp. 88–92.

7. Ivanovskiy V.N., Sabirov A.A., Bulat A.V., Systems of downhole equipment protection from mechanical impurities (In Russ.), Territoriya “NEFTEGAZ”, 2010, no. 9, pp. 62–67.

8. Geologicheskiy slovar' (Geological dictionary): edited by Paffengol'ts K.N., Moscow: Nedra Publ., 1978, 487 p.

Conventional methods of sand control foresee placement of gravel-packed filters in the bottom hole, stabilization of producing formation with chemical compounds, application of erosion – resistant electric submersible pump (ESP) and sucker rod pumping (SRP) units U and installation of filters on their inlets or particles separators. However, all of these methods, in some circumstances fail to resolve completely the problem of submersible equipment protection or ensure extension of mean-time-between failures. Moreover, application of these methods is scarcely may be justified fr om the standpoint of economy. In particular, acute is the problem of setting the mode of wells’ completion after hydraulic fracturing operations to reduce the probability of ESP and SRP units failures. The authors propose to apply the method based on mathematic simulation of potential ingress of particles with pre-determined density and mesh-size in the inlet of submersible pump. The main field of application of the proposed method relates to the wells with low-viscosity fluid’s flow rate below 80 m3/day. The products of such wells contain relatively coarse sand fractions. Considering given conditions, we may reduce the risks of equipment failure upon production process stabilization after completion of well workover by way of setting pump delivery rate below calculated critical flow rate, wh ere the sand of certain coarse grade starts getting to the pump suction. Reduction of pump delivery rate may be attained with the use variable speed controller or temporary operation of equipment in periodic mode. Another area of this method application may include reduced probability of proppant’s suction into the pump upon bringing the wells on to stable production after completion of hydraulic fracturing operations. The method allows planning the parameters of setting operational mode of wells with minimized risk of sand clogging or early wear of submersible equipment, as well as defining the necessity of installation of sand preventers. Commercial application of the proposed method has been already commenced in Rosneft Oil Company.

References

1. Yakimov S.B., Kosarev I.A., Studying of screen filters efficiency used to protect electric submersible pumps in case of big amount of proppant flowback (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2013, no. 6, pp. 29–32.

2. Yakimov S.B., Pushkarev A.V., Vetokhin E.G., Podkorytov S.M., Some techniques of increasing the time of de-sanders’ effective operation to protect electric centrifugal pumps from sand at Samotlor field (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2015, no. 6, pp. 55–60.

3. Yakimov S.B., Some aspects of choosing technology providing protection of underground equipment from sand with account of dynamics of the sand removal while putting wells into operation at Samotlor oil field (In Russ.), Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2013, no. 6, pp. 81–89.

4. Yakimov S.B., Shportko A.A., Sabirov A.A., Bulat A.V., The influence of concentration of abrasive particles in the produced fluid to the reliability of electric centrifugal submersible pumps (In Russ.), Territoriya “NEFTEGAZ”, 2017, no. 6, pp. 50–53.

5. Yakimov S.B., The index of aggressiveness of the rentrained solids at TNK-BP fields in Western Siberia (In Russ.), Neftepromyslovoe delo, 2008, no. 9, pp. 33–38.

6. Ivanovskiy V.N., Sabirov A.A., Bulat A.V. et al., Preliminary results of solids separator pilot testing (In Russ.), Territoriya “NEFTEGAZ”, 2012, no. 11, pp. 88–92.

7. Ivanovskiy V.N., Sabirov A.A., Bulat A.V., Systems of downhole equipment protection from mechanical impurities (In Russ.), Territoriya “NEFTEGAZ”, 2010, no. 9, pp. 62–67.

8. Geologicheskiy slovar' (Geological dictionary): edited by Paffengol'ts K.N., Moscow: Nedra Publ., 1978, 487 p.



Attention!
To buy the complete text of article (a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .

Mobile applications

Read our magazine on mobile devices

Загрузить в Google play

Press Releases

21.10.2020
21.10.2020
19.10.2020