Conditions for hydrocarbon deposits’ formation in the uplift-thrust structures of the eastern side of the Pre-Ural fore deep

UDK: 550.8
DOI: 10.24887/0028-2448-2017-7-36-41
Key words: Pre-Ural and Pre-New-Land belt of oil and gas accumulation, uplift-thrust structures, sub-thrust zones, Pre-Ural fore-deep depression, basin modeling, geomechanical modeling, faults, geo-fluid-dynamic regime
Authors: V.Yu. Kerimov, N.B. Kuznetsov, R.N. Mustaev, A.V. Osipov, A.V. Bondarev, A.S. Nefedova (Gubkin Russian State University of Oil and Gas (National Research University), RF, Moscow)

The article presents the results of studying the conditions for the formation of hydrocarbon accumulations in uplift-thrust structures of the eastern side of the Pre-Ural fore deep, where intense cover-folded dislocations of the western vergence are manifested. Their formation is associated with the intercontinental collision that occurred when the Ural paleoocean was closed at the very end of the Paleozoic, and in the extreme northern segments of the belt, probably at the very beginning of the Mesozoic. Structural paragenesis of the eastern side includes over-thrusts and thrusts, as well as various scaled structural forms formed under the action of latitudinal compression. For the zone of the Forward folds of the Urals located in the South Ural segment of the eastern side of the belt, numerical basin and geomechanical modeling was performed, a series of paleotectonic reconstructions was constructed. It is shown that the fold-uplift-thrust and subnadge structures of the zone of the advanced folds of the Urals are favorable for the formation of hydrocarbon deposits. This conclusion is obviously true for all similar thrust structures of the entire eastern side of the Pre-New-Land belt of oil and gas accumulation.

References

1. Gavrilov V.P., Geodynamic model of oil and gas formation in the lithosphere and its consequences (In Russ.), Geologiya nefti i gaza = The journal Oil and Gas Geology, 1998, no. 6, pp. 2–12.

2. Puchkov V.N., Geologiya Urala i Priural'ya (aktual'nye voprosy stratigrafii, tektoniki, geodinamiki i metallogenii) (Geology of the Urals and the Cisurals (actual issues of stratigraphy, tectonics, geodynamics and metallogeny)), Ufa: DizaynPoligrafServis Publ., 2010, 280 p.

3. Guliev I.S., Kerimov V.Yu., Mustaev R.N., Fundamental challenges of the location of oil and gas in the South Caspian Basin (In Russ.), Doklady RAN = Doklady Earth Sciences, 2016, V. 471, no. 1, pp. 62–65.

4. Ismagilov R.A., Farkhutdinov I.M., Farkhutdinov A.M., Khayrulina L.A., Tectonics and oil potential in conjunction zone of Yuryuzano-Sylvensky depression and Ufimian amphitheater (In Russ.), Georesursy = Georesources, 2015, no. 3 (62), pp. 43–48.

5. Kerimov V.Yu., Gorbunov A.A., Lavrenova E.A., Osipov A.V., Models of hydrocarbon systems in the Russian Platform–Ural junction zone (In Russ.), Litologiya i poleznye iskopaemye = Lithology and Mineral Resources, 2015, no. 5, pp. 445–458.

6. Kerimov V.Yu., Osipov A.V., Nefedova A.S., Hydrocarbon systems of the Pre-Ural fore deep (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2017, no. 4, pp. 36–40

7. Kerimov V.Yu., Shilov G.Ya., Mustaev R.N., Dmitrievskiy S.S., Thermobaric conditions of hydrocarbons accumulations formation in the low-permeability oil reservoirs of Khadum suite of the Pre-Caucasus (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2016, no. 2, pp. 8-11.

8. Rachinsky M.Z., Kerimov V.Yu., Fluid dynamics of oil and gas reservoirs, USA: Scrivener Publishing Wiley, 2015, 618 p.

9. Kerimov V.Yu., Osipov A.V., Mustaev R.N., Monakova A.S., Modeling of petroleum systems in regions with complex geological structure, Proceedings of 16th Science and Applied Research Conference on Oil and Gas Geological Exploration and Development, GEOMODEL 2014, 2014, DOI: 10.3997/2214-4609.20142245 .

10. Ivanov S.N., Puchkov V.N., Ivanov K.S. et al., Formirovanie zemnoy kory Urala (Formation of the Earth's crust of the Urals), Moscow: Nauka Publ., 1986, 248 p.

11. Kuznetsov N.B., Romanyuk T.V., Time-interval of existing of oceanic-type Voykar Paleobasin with connection of Paleozoic evolution of Polar Urals (In Russ.), Byulleten' MOIP. Otdel geologicheskiy = Bulletin of Moscow Society of Naturalists. Geological Series, 2014, V. 89, no. 5, pp. 56–70.

12. Kuznetsov N.B., Soboleva A.A., Udoratina O.V. et al., Pre-Uralian tectonic evolution of the North-East and East frame of the East European craton. Part 2. Neo-Proterozoic-Cambrian Baltica-Arctida collision (In Russ.), Litosfera, 2007, no. 1, pp. 32–45.

13. Petrov G.A., Ronkin Yu.L., Maslov A.V. et al., Timing of the onset of collision in the Central and Northern Urals (In Russ.), Doklady RAN = Doklady Earth Sciences, 2008, V. 422, no. 3, pp. 365–370.

14. Sobornov K.O., Bushuev A.S., Kinematics of the junction zone of the Northern Urals and the Upper Pechora basin (In Russ.), Geotektonika = Geotectonics, 1992, no. 1, pp. 39–51.

15. Kerimov V.Yu., Mustaev R.N., Senin B.V., Lavrenova E.A., Basin modeling tasks at different stages of geological exploration (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2015, no. 4, pp. 26–29.

16. Kerimov V.Yu., Osipov A.V., Lavrenova E.A., The hydrocarbon potential of deep horizons in the south-eastern part of the Volga-Urals oil and gas province (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2014, no. 4, pp. 33–35.

17. Kerimov V.Yu, Rachinsky M.Z., Geo-fluid dynamic concept of hydrocarbons accumulation in natural reservoirs, Doklady Earth Sciences, 2016, V. 471, Part 1, pp. 1123–1125.

18. Kerimov V.Yu., Mustaev R.N., Serikova U.S., Lavrenova E.A., Kruglyakova M.V., Hydrocarbon generation-accumulative system on the territory of Crimea Peninsula and adjacent Azov and Black Seas (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2015, no. 3, pp. 56–60.



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .