Evaluation of the application effectiveness of abrasive jet perforation for enhancing well production rate

UDK: 622.276.5.001.5
DOI: 10.24887/0028-2448-2017-5-56-58
Key words: abrasive jet perforation, acid treatment, permeability, bottomhole pressure
Authors: V.V. Poplygin, D.Iu. Rusinov (Perm National Research Polytechnic University, RF, Perm), M. Wiercigroch, E.E. Pavlovskaia (University of Aberdeen, United Kingdom, Aberdeen)

The analysis of the abrasive jet perforation applying results at the wells of the reservoirs in the Perm region is given. During the operation sand carrier-liquid is injected in two modes (with different injection pressure), as a result cuts and vertical channels are appeared. 4-6 cuts in the casing are created at the preselected depths by abrasive jet perforation. The bulb cavities are washed out in the rock, its sizes depend on the rocks strength, the action duration and the sand carrier-liquid power. It is shown that the channels height created by abrasive jet perforation is about 13 cm; its depth is about 22 cm. The permeability of bottomhole zone’s near field is increasing substantially, that leads to increasing of oil production rates. According to field materials, the average increase of oil production rates was 5.72 tons per day, and for newly introduced wells, the average oil production rate was 16.3 tons per day after the operation. The average additional oil production is more than 1500 tons per operation. According to the work results, it is noted that the abrasive jet perforation helps in a gentle way to increase the permeability of the bottomhole zone. As a result of the field studies analysis, it was noted that additional oil production by geological and technical measures can decrease with lowering of bottomhole and reservoir pressures. The well production rates after abrasive jet perforation gradually decrease, due to the decrease of bottomhole and reservoir pressures; however, the well productivity coefficients after the operation are higher than at similar pressures before operation.

References

1. Ilyushin P.Yu. et al., Analysis of well intervention aimed at oil production enhancement in the Perm krai′s fields (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2015, V. 14, no. 15, pp. 81–89, DOI: 10.15593/2224-9923/2015.15.9.

2. Anur'ev M.K. et al., To forecast the oil production decline rate based on history data of developing oil deposits (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2013, V. 12, no. 6, pp. 93–100.

3. Patent no. 2185497 RF, The method of hydraulic jet perforation and the device for its implementation, Inventors: Matyashov S.V., Yurgenson V.A., Krysin N.I., Opalev V.A., Permyakov A.P., Semenishchev V.P.

4. Uirsigroch M., Poplygin V.V., Rusinov D.Yu. Wiercigroch M., Poplygin V.V., Rusinov D.Iu., Evaluation of reservoir energy consumption during oil well operation on the north Perm region (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2016, V.15, no. 21, pp. 313–319, DOI: 10.15593/2224-9923/2016.21.2.

5. Solovkin O.E., Sophistication ways of wells “spare” perforation (In Russ.), Burenie i neft', 2010, no. 5, pp. 48–51.

6. Poplygin V.V., Poplygina I.S., Changes in productivity wells in bobrikovsky terrigenous of deposits at high Upper Prikamie gas-saturated reservoir oil (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2012, V. 11, no. 5, pp. 63–69.

7. Erofeev A.A., Mordvinov V.A., Changing the properties bottom-hole within the development of bobrikovsky Unvinskogo deposit (In Russ.), Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo = Bulletin of Perm National Research Polytechnic University. Geology. Oil & Gas Engineering & Mining, 2012, V. 11, no. 5, pp. 57–62.

8. Poplygin V.V., Poplygina I.S., Evaluation of rational bottom-hole pressure for oil deposits with high gas saturation (In Russ.), Neftyanoe khozyaystvo = Oil Industry, 2012, no.10, pp. 104–105.

9. Poplygin V.V., Galkin S.V., Forecast quick evaluation of the indices of the development of the oil deposits (In Russ.), Neftyanoe khozyaystvo = Oil Industry. 2011, no. 3, pp. 112–115.    



Attention!
To buy the complete text of article (Russian version a format - PDF) or to read the material which is in open access only the authorized visitors of the website can. .